Skip to main content
Log in

Effect of Mo Content on the Thermal Conductivity and Corrosion Resistance of Die Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this work, effect of Mo content on the microstructure, thermal conductivity, and corrosion resistance of the die steels was investigated by optical microscopy, scanning electron microscopy, x-ray diffraction, laser thermal conductivity meter, electrochemical experiments, and pitting tests. The microstructure of the die steels is mainly composed of lath-shaped tempered martensite. At all the tested temperatures, the thermal conductivity of the die steels is decreased with the increase in Mo content from 1.2 to 5.0 wt.%. However, electrochemical experiments indicate that increase in Mo content in the die steels can reduce the corrosion current density and increase the charge transfer resistance in 0.5 mol·L−1 HCl solution. Furthermore, it was found that Mo in the die steels is beneficial to decrease weight loss and pitting corrosion rate, which improves the pitting corrosion resistance of the die steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M.K. Imran, S.H. Masood, M. Brandt, S. Bhattacharya, S. Gulizia, M. Jahedi and J. Mazumder, Thermal Fatigue Behavior of Direct Metal Deposited H13 Tool Steel Coating on Copper Alloy Substrate, Surf. Coat. Technol., 2012, 206, p 2572–2580.

    Article  CAS  Google Scholar 

  2. C. Meng, H. Zhou, Y. Zhou, M. Gao, X. Tong, D.L. Cong, C.W. Wang, F. Chang and L.Q. Ren, Influence of Different Temperatures on the Thermal Fatigue Behavior and Thermal Stability of Hot-work Tool Steel Processed by a Biomimetic Couple Laser Technique, Opt. Laser Technol., 2013, 57, p 57–65.

    Article  Google Scholar 

  3. X. Tong, M.J. Dai and Z.H. Zhang, Thermal Fatigue Resistance of H13 Steel Treated by Selective Laser Surface Melting and CrNi Alloying, Appl. Surf. Sci., 2013, 271, p 373–380.

    Article  CAS  Google Scholar 

  4. B. Zhang, W. Chen and D.R. Poirier, Effect of Solidification Cooling Rate on the Fatigue Life of A356.2-T6 Cast Aluminum Alloy, Fatigue Fract. Eng. Mater. Struct., 2000, 23, p 417–423.

    Article  CAS  Google Scholar 

  5. D. Kundalkar, M. Mavalankar and A. Tewari, Effect of Gas Nitriding on the Thermal Fatigue Behavior of Martensitic Chromium Hot-work Tool Steel, Mater. Sci. Eng. A., 2016, 621, p 391–398.

    Article  Google Scholar 

  6. N.S. Bailey, C. Katinas and Y.C. Shin, Laser Direct Deposition of AISI H13 Tool Steel Powder with Numerical Modeling of Solid Phase Transformation, Hardness, and Residual Stresses, J. Mater. Process. Technol., 2017, 247, p 223–233.

    Article  CAS  Google Scholar 

  7. S. Li, L.H. Zhou and X.C. Wu, The Influence of Thermal Conductivity of Die Material on the Efficiency of Hot-stamping Process, J. Mater. Eng. Perform., 2016, 25, p 4848–4867.

    Article  CAS  Google Scholar 

  8. M.J. Peet, H.S. Hasan and H.K.D.H. Bhadeshia, Prediction of Thermal Conductivity of Steel, Int. J. Heat Mass Transf., 2011, 54, p 2602–2608.

    Article  CAS  Google Scholar 

  9. E. Kaschnitz, P. Hofer and W. Funk, Thermophysical Properties of a Hot-Work Tool-Steel with High Thermal Conductivity, Int. J. Thermophys., 2013, 34, p 843–850.

    Article  CAS  Google Scholar 

  10. S.D. Guo, R. Bao, S.Y. Li, Y.W. Ye, E.T. Zhu, W.J. Wang, Y.X. Zhang, H. Chen and Y. Ye, The Role of Y2O3, Cu, Mo and Mo2C Additives on Optimizing the Corrosion Resistance of WC-6Co Cemented Carbide in HCl and NaOH Solutions, J. Alloy. Compd., 2020, 827, p 1–11.

    Article  Google Scholar 

  11. X.L. Wang, A.R. Huang, M.X. Li, W. Zhang, C.J. Shang, J.L. Wang and Z.J. Xie, The Significant Roles of Nb and Mo on Enhancement of High Temperature Urea Corrosion Resistance in Ferritic Stainless Steel, Mater. Lett., 2020, 169, p 1–4.

    Google Scholar 

  12. N.D. Nam and J.G. Kim, Effect of Niobium on the Corrosion Behaviour of Low Alloy Steel in Sulfuric Acid Solution, Corros. Sci., 2010, 52, p 3377–3384.

    Article  CAS  Google Scholar 

  13. J. Jin, R. Gao, H. Peng, H. Guo, S. Gong and B. Chen, Rapid Solidification Microstructure and Carbide Precipitation Behavior in Electron Beam Melted High-Speed Steel, Metall. Mater. Trans. A., 2020, 51, p 2411–2429.

    Article  CAS  Google Scholar 

  14. D.M. Liu, W.H. Tuan and C.C. Chiu, Thermal Diffusivity, Heat Capacity and Thermal Conductivity in Al2O3-Ni Composite, Mater. Sci. Eng. B., 1995, 31, p 287–291.

    Article  Google Scholar 

  15. H. Bayati and R. Elliott, Influence of Matrix Structure on Physical Properties of an Alloyed Ductile Cast Iron, Mater. Sci. Technol., 1999, 15, p 265–277.

    Article  CAS  Google Scholar 

  16. J. Wilzer, J. Kupferle, S. Weber and W. Theisen, Temperature-dependent Thermal Conductivities of Non-alloyed and High-alloyed Heat-treatable Steels in the Temperature Range Between 20 and 500 °C, J. Mater. Sci., 2014, 49, p 4833–4843.

    Article  CAS  Google Scholar 

  17. J. Wilzer, J. Kupferle, S. Weber and W. Theisen, Influence of Alloying Elements, Heat Treatment, and Temperature on the Thermal Conductivity of Heat Treatable Steels, Steel Res. Int., 2015, 86, p 1234–1241.

    Article  CAS  Google Scholar 

  18. G.H. Wang and Y.X. Li, Effects of Alloying Elements and Temperature on Thermal Conductivity of Ferrite, J. Appl. Phys., 2019, 126, p 1–9.

    Google Scholar 

  19. S.C. Chen, H.X. Ye and X.Q. Lin, Effect of Rare Earth and Alloying Elements on the Thermal Conductivity of Austenitic Medium Manganese Steel, Int. J. Miner. Metall. Mater., 2017, 24, p 670–674.

    Article  CAS  Google Scholar 

  20. M.Y. Ma, C.L. He, L.Q. Chen, L.L. Wei and R.D.K. Misra, Effect of W and Ce Additions on the Electrochemical Corrosion Behaviour of 444-type Ferritic Stainless Steel, Corros. Eng. Sci. Technol., 2018, 53, p 199–205.

    Article  CAS  Google Scholar 

  21. A. Fattah-alhosseini, S.T. Shoja, B.H. Zebardast and P.M. Samim, An Electrochemical Impedance Spectroscopic Study of the Passive State on AISI 304 Stainless Steel, Int. J. Electrochem., 2011, 2011, p 1–8.

    Google Scholar 

  22. A.I. Munoz, J.G. Anton, J.L. Guinon and V.P. Herranz, Inhibition Effect of Chromate on the Passivation and Pitting Corrosion of a Duplex Stainless Steel in LiBr Solutions Using Electrochemical Techniques, Corros. Sci., 2007, 49, p 3200–3225.

    Article  Google Scholar 

  23. X.H. Hao, J.H. Dong, X. Mu, J. Wei, C.G. Wang and W. Ke, Influence of Sn and Mo on Corrosion Behavior of Ferrite-pearlite Steel in the Simulated Bottom Plate Environment of Cargo Oil Tank, J. Mater. Sci. Technol., 2019, 35, p 799–811.

    Article  Google Scholar 

  24. L. Wei, Z.J. Wang, Q.F. Wu, X.L. Shang, J.J. Li and J.C. Wang, Effect of Mo Element and Heat Treatment on Corrosion Resistance of Ni2CrFeMox High-entropy Alloy in NaCl Solution, Acta Metall. Sin., 2019, 55, p 840–848.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 51571081).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junwei Fu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, J., Wang, J. Effect of Mo Content on the Thermal Conductivity and Corrosion Resistance of Die Steel. J. of Materi Eng and Perform 30, 8438–8446 (2021). https://doi.org/10.1007/s11665-021-06043-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06043-1

Keywords

Navigation