Skip to main content
Log in

Suspension Plasma Spraying: Process Characteristics and Applications

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Suspension plasma spraying (SPS) offers the manufacture of unique microstructures which are not possible with conventional powdery feedstock. Due to the considerably smaller size of the droplets and also the further fragmentation of these in the plasma jet, the attainable microstructural features like splat and pore sizes can be downsized to the nanometer range. Our present understanding of the deposition process including injection, suspension plasma plume interaction, and deposition will be outlined. The drawn conclusions are based on analysis of the coating microstructures in combination with particle temperature and velocity measurements as well as enthalpy probe investigations. The last measurements with the water cooled stagnation probe gives valuable information on the interaction of the carrier fluid with the plasma plume. Meanwhile, different areas of application of SPS coatings are known. In this paper, the focus will be on coatings for energy systems. Thermal barrier coatings (TBCs) for modern gas turbines are one important application field. SPS coatings offer the manufacture of strain-tolerant, segmented TBCs with low thermal conductivity. In addition, highly reflective coatings, which reduce the thermal load of the parts from radiation, can be produced. Further applications of SPS coatings as cathode layers in solid oxide fuel cells (SOFC) and for photovoltaic (PV) applications will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Gell, Application Opportunities for Nanostructured Materials and Coatings, Mater. Sci. Eng. A, 1995, 204(1-2), p 246-251

    Article  Google Scholar 

  2. J. Karthikeyan, C.C. Berndt, S. Reddy, J.-Y. Wang, A.H. King, and H. Herman, Nanomaterials Deposits Formed by DC Plasma Spraying of Liquid Feedstocks, J. Am. Ceram. Soc., 1998, 81(1), p 121-128

    Article  CAS  Google Scholar 

  3. F.-L. Toma, G. Bertrand, S.O. Chwa, C. Meunier, D. Klein, and C. Coddet, Comparative Study on the Photocatalytic Decomposition of Nitrogen Oxides Using TiO2 Coatings Prepared by Conventional Plasma Spraying and Suspension Plasma Spraying, Surf. Coat. Technol., 2006, 200(20-21), p 5855-5862

    Article  CAS  Google Scholar 

  4. E. Bouyer and F. Gitzhofer, The Suspension Plasma Spraying of Bioceramics by Induction Plasma, J. Mater. Sci. Mater. Med., 2000, 11(8), p 465-531

    Article  Google Scholar 

  5. C. Monterrubio-Badillo, H. Ageorges, T. Chartier, J.F. Coudert, and P. Fauchais, Preparation of LaMnO3 Perovskite Thin Films by Suspension Plasma Spraying for SOFC Cathodes, Surf. Coat. Technol., 2006, 200(12-13), p 3743-3756

    Article  CAS  Google Scholar 

  6. R. Siegert, “A Novel Process for the Liquid Feedstock Plasma Spray of Ceramic Coatings with Nanostructural Features,” Ph.D. Work, FZ-Jülich, 2006, Jül-4205

  7. E.H. Jordan, L. Xie, X. Ma, M. Gell, N.P. Padture, B. Cetegen, A. Ozturk, J. Roth, T.D. Xiao, and P.E.C. Bryan, Superior Thermal Barrier Coatings Using Solution Precursor Plasma Spray, J. Therm. Spray Technol., 2004, 13(1), p 57-65

    Article  CAS  ADS  Google Scholar 

  8. J. Oberste Berghaus, S. Bouaricha, J.-G. Legoux, and C. Moreau, Injection Conditions and In-flight Particle States in Suspension Plasma Spraying of Alumina and Zirconia Nano-ceramics, Proceedings of the 2005 International Thermal Spray Conference, Thermal Spray: Building on 100 Years of Success, May 2-5, 2005 (Basel, Switzerland), ASM International, 2005, p 512-518

  9. C. Delbos, J. Fazilleau, V. Rat, J.F. Coudert, P. Fauchais, and B. Pateyron, Phenomena Involved in Suspension Plasma Spraying, Part 1: Suspension Injection and Behavior, Plasma Chem. Plasma Process., 2006, 26(4), p 371-391

    Article  CAS  Google Scholar 

  10. J. Grey, P.F. Jacobs, and M.P. Sherman, Calorimetric Probe for the Measurement of Extremely High Temperatures, Rev. Sci. Instrum., 1962, 33(7), p 738-741

    Article  ADS  Google Scholar 

  11. J.R. Fincke, W.D. Swank, S.C. Snyder, and D.C. Haggard, Enthalpy Probe Performance in Compressible Thermal Plasma Jets, Rev. Sci. Instrum., 1993, 64(12), p 3585-3593

    Article  CAS  ADS  Google Scholar 

  12. A. Capetti and E. Pfender, Probe Measurements in Argon Plasma Jets Operated in Ambient Argon, Plasma Chem. Plasma Process., 1989, 9(2), p 329-341

    Article  CAS  Google Scholar 

  13. W.L.T. Chen, J. Heberlein, and E. Pfender, Diagnostics of a Thermal Plasma Jet by Optical Emission Spectroscopy and Enthalpy Probe Measurements, Plasma Chem. Plasma Process., 1994, 14(3), p 317-332

    Article  CAS  Google Scholar 

  14. E. Pfender, Plasma Jet Behavior and Modeling Associated with the Plasma Spray Process, Thin Solid Films, 1994, 238, p 228-241

    Article  CAS  ADS  Google Scholar 

  15. M. Rahmane, G. Soucy, M.I. Boulos, and R. Henne, Fluid Dynamic Study of Direct Current Plasma Jets for Plasma Spraying Applications, J. Therm. Spray Technol., 1998, 7(3), p 349-356

    Article  CAS  ADS  Google Scholar 

  16. A. Denoirjean, O. Lagnoux, P. Fauchais, and V. Sember, Oxidation Control in Atmospheric Plasma Spraying: Comparison between Ar/H2/He and Ar/H2 Mixtures, Thermal Spray: Meeting the Challenges of the 21st Century, C. Coddet, Ed., May 25-29, 1998 (Nice, France), ASM International, 1998, p 809-814

  17. J.-E. Döring, J.-L. Marqués, R. Vaßen, and D. Stöver, The Influence of Plasma Characteristics on Particle Properties During Plasma-Spraying of Yttria Stabilized Zirconia Using a Triplex Torch, Thermal Spray 2004: Advances in Technology and Application, on CD-ROM, May 10-12, 2004 (Osaka, Japan), Verlag für Schweißen und verwandte Verfahren DVS-Verlag, 2004

  18. J.-E. Döring, R. Vaßen, and D. Stöver, Influence of Carrier Gas Flow and Liquid Injection in the Plasma Jet on Plasma Characteristics During the Atmospheric Plasma Spray Process, Thermal Spray 2003: Advancing the Science & Applying the Technology, C. Moreau and B. Marple, Ed., May 5-8, 2003 (Orlando), ASM International, 2003, p 641-647

  19. G. Mauer, R. Vaßen, and D. Stöver, Comparison and Applications of DPV-2000 and Accuraspray-g3 Diagnostic Systems, J. Therm. Spray Technol., 2007, 16(3), p 414-424

    Article  CAS  ADS  Google Scholar 

  20. M.I. Boulos, P. Fauchais, and E. Pfender, Thermal Plasmas, Fundamentals and Applications, Plenum Press, New York, 1994

    Google Scholar 

  21. M. Rahmane, G. Soucy, and M.I. Boulos, Analysis of the Enthalpy Probe Technique for Thermal Plasma Diagnostics, Rev. Sci. Instrum., 1995, 66(6), p 3424-3431

    Article  CAS  ADS  Google Scholar 

  22. J. Fazilleau, C. Delbos, V. Rat, J.F. Coudert, P. Fauchais, and B. Pateyron, Phenomena Involved in Suspension Plasma Spraying, Part 1: Suspension Injection and Behavior, Plasma Chem. Plasma Process., 2006, 26, p 371-391

    Article  CAS  Google Scholar 

  23. B. Ganz, W. Krebs, R. Koch, and S. Wittig, Spectral Emissivity Measurements of Thermal Barrier Coatings, AIAA/ASME Joint Thermophysics and Heat Transfer Conference, Vol 1, ASME 1998, p 291-296

  24. A. Stuke: Optimierung der Reflektivität keramischer Wärmedämmschichten aus Ytttrium-teilstablisiertem Zirkoniumdioxid für den Einsatz auf metallischen Komponenten in Gasturbinen, Schriften des Forschungszentrums Jülich, Vol 4, ISSN 1866-1793

  25. C. Delbos, J. Fazilleau, V. Rat, J.F. Coudert, P. Fauchais, and B. Pateyron, Phenomena Involved in Suspension Plasma Spraying Part 2: Zirconia Particle Treatment and Coating Formation, Plasma Chem. Plasma Process., 2006, 26, p 393-414

    Article  CAS  Google Scholar 

  26. P. Bengtsson, T. Ericsson, and J. Wigren, Thermal Shock Testing of Burner Cans Coated with a Thick Thermal Barrier Coating, J. Therm. Spray Technol., 1998, 7(3), p 340-348

    Article  CAS  ADS  Google Scholar 

  27. R. Vaßen, H. Guo, and D. Stöver, Manufacture and Properties of Segmented Thermal Barrier Coatings, Proceedings of the 29th International Cocoa Beach Conference & Exposition, D. Zhu and W.M. Kriven, Ed., Jan 23-28, 2005 (Cocoa Beach, FL), Ceramic Engineering and Science Proceedings, Vol 26(38), p 37-45

  28. R. Vaßen, H. Kaßner, A. Stuke, F. Hauler, D. Hathiramani, and D. Stöver, Advanced Thermal Spray Technologies for Applications in Energy System, Surf. Coat. Technol., 2008, 202(18), p 4432-4437

    Article  CAS  Google Scholar 

  29. H. Kaßner, R. Stuke, R. Vaßen, and D. Stöver, Influence of Microstructure on Thermal and Optical Properties of Suspension Plasma Sprayed (SPS) and Atmospheric Plasma Sprayed (APS) Coatings, e-Proceedings of the International Thermal Spray Conference & Exposition 2008 (ITSC), E. Lugscheider, Ed., Düsseldorf, Verlag für Schweißen und Verwandte Verfahren, 2008, p 585-589

  30. G. Schiller, R. Henne, M. Lang, and M. Müller, DC and RF Plasma Processing for Fabrication of Solid Oxide Fuel Cells, Mater. Sci. Forum, 2003, 426-432, p 2539-2544

    Article  CAS  Google Scholar 

  31. D. Hathiramani, A. Mobeen, W. Fischer, P. Lersch, D. Sebold, R. Vaßen, D. Stöver, and R.J. Damani, Simultaneous Deposition of LSM and YSZ for SOFC Cathode Functional Layers by an APS Process, Proceedings of the International Thermal Spray Conference 2005, E. Lugscheider, Ed., Basel, Schweiz, 2.-4.Mai 2005, DVS German Welding Society, p 585-589

  32. R. Vaßen, D. Hathiramani, J. Mertens, V. Haanappels, and I.C. Vincke, Manufacture of High Performance Solid Oxide Fuel Cells (SOFCs) with Atmospheric Plasma Spraying (APS), Surf. Coat. Technol., 2007, 202-203, p 499-508

    Article  CAS  Google Scholar 

  33. Y. Ando, S. Tobe, and H. Tahar, Dye Sensitized Solar Cells Using Titanium Oxide Photo Voltaic Devices Fabricated by Different Thermal Plasma Processes, Thermal Spray 2007, Global Coating Solutions, B. Marple, M.M. Hyland, Y.-C. Lau, R.S. Lima, and G. Montavon, Ed., ASM International, Ohio Park, 2007, p 1093-1098

  34. R. Vaßen, Z. Yi, H. Kaßner, and D. Stöver, Suspension Plasma Spraying of TiO2 for the Manufacture of Photovoltaic Cells, Surf. Coat. Technol., 2009, 203(15), p 2146-2149

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Mr. K. H. Rauwald, Mr. R. Laufs and Mr. Vondahlen (all IEF1, FZ Jülich) for the manufacture of the plasma-sprayed coatings. Special thanks to Dr. Alexandra Stuke for performing measurements of the optical properties of TBCs, Dr. Dag Hathiramani for preparation of SOFC components and Dr. Zeng Yi for preparation of several photovoltaic cells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Vaßen.

Additional information

This article is an invited paper selected from presentations at the 2009 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Expanding Thermal Spray Performance to New Markets and Applications: Proceedings of the 2009 International Thermal Spray Conference, Las Vegas, Nevada, USA, May 4-7, 2009, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, OH, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaßen, R., Kaßner, H., Mauer, G. et al. Suspension Plasma Spraying: Process Characteristics and Applications. J Therm Spray Tech 19, 219–225 (2010). https://doi.org/10.1007/s11666-009-9451-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-009-9451-x

Keywords

Navigation