Skip to main content
Log in

Multiobjective Optimization of Atmospheric Plasma Spray Process Parameters to Deposit Yttria-Stabilized Zirconia Coatings Using Response Surface Methodology

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Atmospheric plasma spraying is used extensively to make Thermal Barrier Coatings of 7-8% yttria-stabilized zirconia powders. The main problem faced in the manufacture of yttria-stabilized zirconia coatings by the atmospheric plasma spraying process is the selection of the optimum combination of input variables for achieving the required qualities of coating. This problem can be solved by the development of empirical relationships between the process parameters (input power, primary gas flow rate, stand-off distance, powder feed rate, and carrier gas flow rate) and the coating quality characteristics (deposition efficiency, tensile bond strength, lap shear bond strength, porosity, and hardness) through effective and strategic planning and the execution of experiments by response surface methodology. This article highlights the use of response surface methodology by designing a five-factor five-level central composite rotatable design matrix with full replication for planning, conduction, execution, and development of empirical relationships. Further, response surface methodology was used for the selection of optimum process parameters to achieve desired quality of yttria-stabilized zirconia coating deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. T. Beck, R. Herzog, O. Trunova, M. Offermann, R.W. Steinbrech, and L. Singheiser, Damage Mechanisms and Lifetime Behavior of Plasma-Sprayed Thermal Barrier Coating Systems for Gas Turbines. Part II. Modeling, Surf. Coat. Technol., 2008, 202, p 5901-5908

    Article  CAS  Google Scholar 

  2. J. Gómez-García, A. Rico, M.A. Garrido-Maneiro, C.J. Múnez, P. Poza, and V. Utrilla, Correlation of Mechanical Properties and Electrochemical Impedance Spectroscopy Analysis of Thermal Barrier Coatings, Surf. Coat. Technol., 2009, 204, p 812-815

    Article  Google Scholar 

  3. S.-I. Jung, J.-H. Kim, J.-H. Lee, Y.-G. Jung, U. Paik, and K.-S. Lee, Microstructure and Mechanical Properties of Zirconia-Based Thermal Barrier Coatings with Starting Powder Morphology, Surf. Coat. Technol., 2009, 204, p 802-806

    Article  CAS  Google Scholar 

  4. S.A. Sadeghi-Fadaki, K. Zangeneh-Madar, and Z. Valefi, The Adhesion Strength and Indentation Toughness of Plasma-Sprayed Yttria Stabilized Zirconia Coatings, Surf. Coat. Technol., 2010, 204, p 2136-2141

    Article  CAS  Google Scholar 

  5. P. Diez and R.W. Smith, The Influence of Powder Agglomeration Methods on Plasma Sprayed Yttria Coatings, J. Therm. Spray Technol., 1993, 2, p 165-172

    Article  CAS  Google Scholar 

  6. A. Kulkarni, A. Vaidya, A. Goland, S. Sampath, and H. Herman, Processing Effects on Porosity-Property Correlations in Plasma Sprayed Yttria-Stabilized Zirconia Coatings, Mater. Sci. Eng. A, 2003, 359, p 100-111

    Article  Google Scholar 

  7. R. Kingswell, K.T. Scott, and L.L. Wassell, Optimizing the Vacuum Plasma Spray Deposition of Metal, Ceramic and Cermet Coatings Using Designed Experiments, J. Therm. Spray Technol., 1993, 2, p 179-186

    Article  CAS  Google Scholar 

  8. Y. Wang and T.W. Coyle, Optimization of Solution Precursor Plasma Spray Process by Statistical Design of Experiment, J. Therm. Spray Technol., 2008, 17, p 692-699

    Article  CAS  Google Scholar 

  9. Troczynski and M. Plamondon, Response Surface Methodology for Optimization of Plasma Spraying, J. Therm. Spray Technol., 1992, 1, p 293-300

    Article  CAS  Google Scholar 

  10. F.H. Yuan, Z.X. Chen, Z.W. Huang, Z.G. Wang, and S.J. Zhu, Oxidation Behavior of Thermal Barrier Coatings with HVOF and Detonation-Sprayed NiCrAlY Bondcoats, Corros. Sci., 2008, 50, p 1608-1617

    Article  CAS  Google Scholar 

  11. E. Lugscheider, F. Ladru, V. Gourlaouen, and C. Gualco, Enhanced Atmospheric Plasma Spraying of Thick TBCs by Improved Process Control and Deposition Efficiency, Thermal Spray: Meeting the Challenges of the 21st Century, C. Coddet, Ed., May 25-29, 1998 (Nice, France), ASM International, 1998, 1693 p

  12. J. Wigren and L. Pejryd, Thermal Barrier Coatings-Why, How, Where and Where to, Thermal Spray: Meeting the Challenges of the 21st Century, C. Coddet, Ed., May 25-29, 1998 (Nice, France), ASM International, 1998, 1693 p

  13. K.C. Chang, W.J. Wei, and C. Chen, Oxidation Behavior of Thermal Barrier Coatings Modified by Laser Remelting, Surf. Coat. Technol., 1998, 102, p 197-204

    Article  CAS  Google Scholar 

  14. P.-C. Tsai, J.-H. Lee, and C.-L. Chang, Improving the Erosion Resistance of Plasma-Sprayed Zirconia Thermal Barrier Coatings by Laser Glazing, Surf. Coat. Technol., 2007, 202, p 719-724

    Article  CAS  Google Scholar 

  15. M. Prystay, P. Gougeon, and C. Moreau, Structure of Plasma-Sprayed Zirconia Coatings Tailored by Controlling the Temperature and Velocity of the Sprayed Particles, J. Therm. Spray Technol., 2001, 10, p 67-75

    Article  CAS  Google Scholar 

  16. M. Friis, C. Persson, and J. Wigren, Influence of Particle In-Flight Characteristic on the Microstructure of Atmospheric Plasma Sprayed Yttria Stabilized ZrO2, Surf. Coat. Technol., 2001, 141, p 115-127

    Article  CAS  Google Scholar 

  17. A. Kucuk, R.S. Lima, and C.C. Berndt, Influence of Plasma Spray Parameters on In-Flight Characteristics of ZrO2-8(wt.%)Y2O3 Ceramic Particles, J. Am. Ceram. Soc., 2001, 84, p 685-692

    Article  CAS  Google Scholar 

  18. A. Kucuk, R.S. Lima, and C.C. Berndt, Influence of Plasma Spray Parameters on Formation and Morphology of ZrO2-8(wt.%)Y2O3 Ceramic Particles, J. Am. Ceram. Soc., 2001, 84, p 693-700

    Article  CAS  Google Scholar 

  19. R. Suryanarayanan, Plasma Spraying: Theory and Applications, World Scientific Publishing, New York, 1993

    Google Scholar 

  20. R.B. Hiemann, Plasma-Spray Coating-Principles and Applications, Wiley VCH Publishers Inc., New York, 1996

    Book  Google Scholar 

  21. L. Pawlowski, The Science Engineering of Thermal Spray Coatings, 2nd ed., John Wiley & Sons Ltd, London, 2008

    Book  Google Scholar 

  22. A.I. Khuri and J.A. Cornell, Response Surfaces; Design and Analysis, Marcel Dekker Ltd, New York, 1996

    Google Scholar 

  23. R.G. Miller, J.E. Freund, and D.E. Johnson, Probability and Statistics for Engineers, Prentice of Hall of India Pvt Ltd., New Delhi, 1999

    Google Scholar 

  24. D.C. Montgomery, Design and Analysis of Experiments, John Wiley & Sons Ltd, New Delhi, 2007

    Google Scholar 

  25. C.R.C. Lima and J.M. Guilemany, Adhesion Improvements of Thermal Barrier Coatings with HVOF Thermally Sprayed Bond Coats, Surf. Coat. Technol., 2007, 201, p 4694-4701

    Article  CAS  Google Scholar 

  26. K.Y. Benyounis and A.G. Olabi, Optimization of Different Welding Processes Using Statistical and Numerical Approaches—A Reference Guide, Adv. Eng. Softw., 2008, 39, p 483-496

    Article  Google Scholar 

  27. A.R. Hamad, J.H. Abboud, F.M. Shuaeib, and K.Y. Benyounis, Surface Hardening of Commercially Pure Titanium by Laser Nitriding: Response Surface Analysis, Adv. Eng. Softw., 2010, 41, p 674-679

    Article  Google Scholar 

  28. H. Öktem, T. Erzurumlu, and H. Kurtaran, Application of Response Surface Methodology in the Optimization of Cutting Conditions for Surface Roughness, J. Mater. Process. Technol., 2005, 170, p 11-16

    Article  Google Scholar 

  29. A.S. Shahi and S. Pandey, Modelling of the Effects of Welding Conditions on Dilution of Stainless Steel Claddings Produced by Gas Metal Arc Welding Procedures, J. Mater. Process. Technol., 2008, 196, p 339-344

    Article  CAS  Google Scholar 

  30. S. Kumar, P. Kumar, and H.S. Shan, Effect of Evaporative Pattern Casting Process Parameters on the Surface Roughness of Al-7% Si Alloy Castings, J. Mater. Process. Technol., 2007, 182, p 615-623

    Article  CAS  Google Scholar 

  31. G.E.P. Box and N.R. Draper, Empirical Model-Building and Response Surfaces, John Wiley & Sons, Inc., New York, 1986

    Google Scholar 

  32. R.H. Myers and D.C. Montgomery, Response Surface Methodology, John Wiley & Sons, Inc., New York, 2002

    Google Scholar 

  33. J.F. Li, H. Liao, B. Normand, C. Cordier, G. Maurin, J. Foct, and C. Coddet, Uniform Design Method for Optimization of Process Parameters of Plasma Sprayed TiN Coatings, Surf. Coat. Technol., 2003, 176, p 1-13

    Article  CAS  Google Scholar 

  34. G. Montavon, C.C. Berndt, C. Coddet, S. Sampath, and H. Herman, Quality Control of the Intrinsic Deposition Efficiency from the Controls of the Splat Morphologies and the Deposit Microstructure, J. Therm. Spray Technol., 1997, 6, p 153-166

    Article  CAS  Google Scholar 

  35. H.D. Steffens and T. Duda, Enthalpy Measurements of Direct Current Plasma Jets Used for ZrO2 7Y2O3 Thermal Barrier Coatings, J. Therm. Spray Technol., 2000, 9, p 235-240

    Article  CAS  Google Scholar 

  36. T. Streibl, A. Vaidya, M. Friis, V. Srinivasan, and S. Sampath, A Critical Assessment of Particle Temperature Distributions During Plasma Spraying: Experimental Results for YSZ, Plasma. Chem. Plasma Process., 2006, 26, p 73-102

    Article  CAS  Google Scholar 

  37. A. Kucuk, C.C. Berndt, U. Senturk, R.S. Lima, and C.R.C. Lima, Influence of Plasma Spray Parameters on Mechanical Properties of Yttria Stabilized Zirconia Coatings. I. Four Point Bend Test, Mater. Sci. Eng. A, 2000, 284, p 29-40

    Article  Google Scholar 

  38. S. Guessasma, Z. Salhi, G. Montavon, P. Gougeon, and C. Coddet, Artificial Intelligence Implementation in the APS Process Diagnostic, Mater. Sci. Eng. B, 2004, 110, p 285-295

    Article  Google Scholar 

  39. S. Kuroda, T. Fukushima, and S. Kitahara, Significance of Quenching Stress in the Cohesion and Adhesion of Thermally Sprayed Coatings, J. Therm. Spray Technol., 1992, 1, p 325-332

    Article  CAS  Google Scholar 

  40. S. Kuroda, T. Dendo, and S. Kitahara, Quenching Stress in Plasma Sprayed Coatings and Its Correlation with the Deposit Microstructure, J. Therm. Spray Technol., 1995, 4, p 75-84

    Article  CAS  Google Scholar 

  41. Y. Liu, T. Nakamura, V. Srinivasan, A. Vaidya, A. Gouldstone, and S. Sampath, Non-Linear Elastic Properties of Plasma-Sprayed Zirconia Coatings and Associated Relationships with Processing Conditions, Acta Mater., 2007, 55, p 4667-4678

    Article  CAS  Google Scholar 

  42. M. Vardelle, A. Vardelle, P. Fauchais, K.I. Li, B. Dussoubs, and N.J. Themelis, Controlling Particle Injection in Plasma Spraying, J. Therm. Spray Technol., 2001, 10, p 267-284

    Article  CAS  Google Scholar 

  43. P. Fauchais, Understanding Plasma Spraying, J. Phys. D Appl. Phys., 2004, 37, p 86-108

    Article  Google Scholar 

  44. R.L. Williamson, J.R. Fincke, and C.H. Chang, A Computational Examination of the Sources of Statistical Variance in Particle Parameters During Thermal Plasma Spraying, Plasma. Chem. Plasma Process., 2000, 20, p 299-324

    Article  CAS  Google Scholar 

  45. T. Kavka and A. Maslani, Influence of Injection Mode on Properties of DC Plasma Jets for Thermal Plasma Spraying, Czech. J. Phys., 2004, 54, p 766-771

    Article  CAS  Google Scholar 

  46. R.L. Williamson, J.R. Fincke, and C.H. Chang, Numerical Study of the Relative Importance of Turbulence, Particle Size and Density and Injection Parameters on Particle Behavior During Thermal Plasma Spraying, J. Therm. Spray Technol., 2002, 11, p 107-118

    Article  CAS  Google Scholar 

  47. A.K. Lakshminarayanan, V. Balasubramanian, R. Varahamoorthy, and S. Babu, Predicting the Dilution of Plasma Transferred Arc Hardfacing of Stellite on Carbon Steel using Response Surface Methodology, Met. Mater. Int., 2008, 14, p 779-789

    Article  CAS  Google Scholar 

  48. K.Y. Benyounis, A.G. Olabi, and M.S.J. Hashmi, Optimizing the Laser-Welded Butt Joints of Medium Carbon Steel Using RSM, J. Mater. Process. Technol., 2005, 164, p 986-989

    Article  Google Scholar 

  49. Design-Expert Software, V8 User’s Guide, Technical Manual, Stat Ease, Inc., Minneapolis, 2008

  50. R. Soltani, T.W. Coyle, J. Mostaghimi, R.S. Lima, and C. Moreau, Thermo-Physical Properties of Plasma Sprayed Yttria Stabilized Zirconia Coatings, Surf. Coat. Technol., 2008, 202, p 3954-3959

    CAS  Google Scholar 

  51. G. Bertrand, P. Bertrand, P. Roy, C. Rio, and R. Mevrel, Low Conductivity Plasma Sprayed Thermal Barrier Coating Using Hollow PSZ Spheres: Correlation Between Thermophysical Properties and Microstructure, Surf. Coat. Technol., 2008, 202, p 1994-2001

    Article  CAS  Google Scholar 

  52. H. Guo, S. Kuroda, and H. Murakami, Microstructures and Properties of Plasma-Sprayed Segmented Thermal Barrier Coatings, J. Am. Ceram. Soc., 2006, 89, p 1432-1439

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to express their sincere thanks to the Department of Science and Technology (DST), Govt. of India, New Delhi for the financial support extended to carry out this investigation through the sponsored fast-track scheme for young scientists—R&D project No. SR/FT/ETA-01/2009. The help provided by Mr. A. K. Lakshminarayanan (PhD Scholar, the Dept. of Manufacturing Engg., Annamalai University) in the statistical part of this article is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. S. Ramachandran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramachandran, C.S., Balasubramanian, V. & Ananthapadmanabhan, P.V. Multiobjective Optimization of Atmospheric Plasma Spray Process Parameters to Deposit Yttria-Stabilized Zirconia Coatings Using Response Surface Methodology. J Therm Spray Tech 20, 590–607 (2011). https://doi.org/10.1007/s11666-010-9604-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-010-9604-y

Keywords

Navigation