Skip to main content
Log in

The Use of Particle/Substrate Material Models in Simulation of Cold-Gas Dynamic-Spray Process

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Cold spray is a coating deposition method in which the solid particles are accelerated to the substrate using a low temperature supersonic gas flow. Many numerical studies have been carried out in the literature in order to study this process in more depth. Despite the inability of Johnson-Cook plasticity model in prediction of material behavior at high strain rates, it is the model that has been frequently used in simulation of cold spray. Therefore, this research was devoted to compare the performance of different material models in the simulation of cold spray process. Six different material models, appropriate for high strain-rate plasticity, were employed in finite element simulation of cold spray process for copper. The results showed that the material model had a considerable effect on the predicted deformed shapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. H. Assadi, F. Gärtner, T. Stoltenhoff, and H. Kreye, Bonding Mechanism in Cold Gas Spraying, Acta Mater., 2003, 51(15), p 4379-4394

    Article  Google Scholar 

  2. M. Grujicic, C.L. Zhao, W.S. DeRosset, and D. Helfritch, Adiabatic Shear Instability Based Mechanism for Particles/Substrate Bonding in the Cold-Gas Dynamic-Spray Process, Mater. Des., 2004, 25(8), p 681-688

    Article  Google Scholar 

  3. M. Grujicic, J.R. Saylor, D.E. Beasley, W.S. DeRosset, and D. Helfritch, Computational Analysis of the Interfacial Bonding Between Feed-Powder Particles and the Substrate in the Cold-Gas Dynamic-Spray Process, Appl. Surf. Sci., 2003, 219(3-4), p 211-227

    Article  Google Scholar 

  4. T. Schmidt, F. Gärtner, H. Assadi, and H. Kreye, Development of a Generalized Parameter Window for Cold Spray Deposition, Acta Mater., 2006, 54(3), p 729-742

    Article  Google Scholar 

  5. G. Bae, S. Kumar, S. Yoon, K. Kang, H. Na, H.-J. Kim, and C. Lee, Bonding Features and Associated Mechanisms in Kinetic Sprayed Titanium Coatings, Acta Mater., 2009, 57(19), p 5654-5666

    Article  Google Scholar 

  6. P.C. King, G. Bae, S.H. Zahiri, M. Jahedi, and C. Lee, An Experimental and Finite Element Study of Cold Spray Copper Impact onto Two Aluminum Substrates, J. Thermal Spray Technol., 2010, 19(3), p 620-634

    Article  Google Scholar 

  7. J. Kocimski, R.G. Maev, and V. Leshchynsky, Modeling of Particle Consolidation by Cold Spray, International Thermal Spray Conference & Exposition 2010, Thermal Spray: Global Solutions for Future Application. DVS-ASM, Materials Park, 2010, p. 774-779

  8. W.Y. Li, C. Zhang, C.-J. Li, and H. Liao, Modeling Aspects of High Velocity Impact of Particles in Cold Spraying by Explicit Finite Element Analysis, ASM Int., 2009, 18, p 921-933

    Google Scholar 

  9. W.-Y. Li, S. Yin, and X.-F. Wang, Numerical Investigations of the Effect of Oblique Impact on Particle Deformation in Cold Spraying by the SPH Method, Appl. Surf. Sci., 2010, 256(12), p 3725-3734

    Article  Google Scholar 

  10. R. Ghelichi, S. Bagherifard, M. Guagliano, and M. Verani, Numerical Simulation of Cold Spray Coating, Surf. Coat. Technol., 2011, 205(23-24), p 5294-5301

    Article  Google Scholar 

  11. A. Moridi, S. Hassani-Gangaraj, and M. Guagliano, A Hybrid Approach to Determine Critical and Erosion Velocities in the Cold Spray Process, Appl. Surf. Sci., 2013, 273, p 617-624

    Article  Google Scholar 

  12. B. Hopkinson, A Method of Measuring the Pressure Produced in the Detonation of High Explosives or by the Impact of Bullets, Proc. R. Soc. Lond. Ser. A, 1914, 89(612), p 411-413

    Article  Google Scholar 

  13. P.S. Follansbee and U.F. Kocks, A Constitutive Description of the Deformation of Copper Based on the Use of the Mechanical Threshold Stress as an Internal State Variable, Acta Mater., 1987, 36, p 81-93

    Article  Google Scholar 

  14. W. Tong and R.J. Clifton, Pressure-Shear Impact Investigation of Strain Rate History Effects in Oxygen-Free High-Conductivity Copper, Mech. Phys. Solids, 1991, 40, p 1251-1294

    Article  Google Scholar 

  15. S. Huang, and R.J. Clifton, Macro and Micro-Mechanics of High Velocity Deformation and Fracture, IUTAM Symposium on MMMHVDF, Tokyo, 1985, p. 63

  16. M.A. Meyers, F. Gregori, B.K. Kad, M.S. Schneider, D.H. Kalantar, B.A. Remington, G. Ravichandran, T. Boehly, and J.S. Wark, Laser-Induced Shock Compression of Monocrystalline Copper: Characterization and Analysis, Acta Mater., 2003, 51(5), p 1211-1228

    Article  Google Scholar 

  17. W.J. Murphy, A. Higginbotham, G. Kimminau, B. Barbrel, E.M. Bringa, J. Hawreliak, R. Kodama, M. Koenig, W. McBarron, M.A. Meyers, B. Nagler, N. Ozaki, N. Park, B. Remington, S. Rothman, S.M. Vinko, T. Whitcher, and J.S. Wark, The Strength of Single Crystal Copper Under Uniaxial Shock Compression at 100 GPa, J. Phys., 2010, 22, p 1-6

    Google Scholar 

  18. E.M. Bringa, K. Rosolankova, R.E. Rudd, B.A. Remington, J.S. Wark, M. Duchaineau, D.H. Kalantar, J. Hawreliak, and J. Belak, Shock Deformation of Face-Centred-Cubic Metals on Subnanosecond Timescales, Nat. Mater., 2006, 5(10), p 805-809

    Article  Google Scholar 

  19. G.R. Johnson and W.H. Cook, Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures, Eng. Fract. Mech., 1985, 21(1), p 31-48

    Article  Google Scholar 

  20. C.Y. Gao and L.C. Zhang, Constitutive Modelling of Plasticity of fcc Metals Under Extremely High Strain Rates, Int. J. Plast., 2012, 32-33, p 121-133

    Article  Google Scholar 

  21. J.-B. Kim and H. Shin, Comparison of Plasticity Models for Tantalum and a Modification of the PTW Model for Wide Ranges of Strain, Strain Rate, and Temperature, Int. J. Impact Eng., 2009, 36(5), p 746-753

    Article  Google Scholar 

  22. R. Liang and A.S. Khan, A Critical Review of Experimental Results and Constitutive Models for BCC and FCC Metals Over a Wide Range of Strain Rates and Temperatures, Int. J. Plast., 1999, 15, p 963-980

    Article  Google Scholar 

  23. F.H. Abed, G.Z. Voyiadjis, B. Rouge, and Louisiana, A Consistent Modified Zerilli-Armstrong Flow Stress Model for BCC and FCC Metals for Elevated Temperatures, Acta Mech., 2005, 175, p 1-18

    Article  Google Scholar 

  24. G.Z. Voyiadjis and F.H. Abed, Microstructural Based Models for bcc and fcc Metals with Temperature and Strain Rate Dependency, Mech. Mater., 2003, 37, p 355-378

    Article  Google Scholar 

  25. D.L. Preston, D.L. Tonks, and D.C. Wallace, Model of Plastic Deformation for Extreme Loading Conditions, Appl. Phys., 2003, 93, p 211-220

    Article  Google Scholar 

  26. H. Huh, H. Lee, and J. Song, Dynamic Hardening Equation of the Auto-Body Steel Sheet with the Variation of Temperature, Int. J. Automot. Technol., 2012, 13(1), p 43-60

    Article  Google Scholar 

  27. M. Grujicic, B. Pandurangan, C.F. Yen, and B. Cheeseman, Modifications in the AA5083 Johnson-Cook Material Model for Use in Friction Stir Welding Computational Analyses, J. Mater. Eng. Perform., 2012, 21(11), p 2207-2217

    Article  Google Scholar 

  28. R. Armstrong and F. Zerilli, Dislocation Mechanics Aspects of Plastic Instability and Shear Banding, Mech. Mater., 1994, 17(2), p 319-327

    Article  Google Scholar 

  29. F.J. Zerilli and R.W. Armstrong, Dislocation Mechanics Based Constitutive Relations for Material Dynamics Calculations, J. Appl. Phys., 1987, 61(5), p 1816-1825

    Article  Google Scholar 

  30. A.S. Khan and R. Liang, Behaviors of Three BCC Metal Over a Wide Range of Strain Rates and Temperatures: Experiments and Modeling, Int. J. Plast., 1999, 15(10), p 1089-1109

    Article  Google Scholar 

  31. A.S. Khan and R. Liang, Behaviors of Three BCC Metals During Non-proportional Multi-axial Loadings: Experiments and Modeling, Int. J. Plast., 2000, 16(12), p 1443-1458

    Article  Google Scholar 

  32. H. Huh, J.H. Song, and H.J. Lee, Dynamic Tensile Tests of Auto-Body Steel Sheets with the Variation of Temperature, Solid State Phenom., 2006, 116, p 259-262

    Google Scholar 

  33. D. Simulia, ABAQUS 6.11 Analysis User’s Manual, Abaqus 6.11 Documentation, 2011, p 22.22

  34. E.P. De Garmo, J.T. Black, and R.A. Kohser, DeGarmo’s Materials and Processes in Manufacturing, Wiley, New Jersey, 2011

    Google Scholar 

  35. W.Y. Li, Study on Effect of Particle Parameters on Deposition Behavior, Microstructure Evolution and Properties in Cold Spraying. Xi’an Jiotong University, China

  36. D. Rittel, G. Ravichandran, and S. Lee, Large Strain Constitutive Behavior of OFHC Copper over a Wide Range of Strain Rates Using the Shear Compression Specimen, Mech. Mater., 2002, 34(10), p 627-642

    Article  Google Scholar 

  37. K. Ahn, H. Huh, and L. Park, Comparison of Dynamic Hardening Equations for Metallic Materials with the Variation of Crystalline Structures, ICHSF2012, 2012, p. 176-187

  38. R.A. MacDonald and W.M. MacDonald, Thermodynamic Properties of fcc Metals at High Temperatures, Phys. Rev. B, 1981, 24(4), p 1715-1724

    Article  Google Scholar 

  39. A.C. Mitchell and W.J. Nellis, Shock Compression of Aluminum, Copper, and Tantalum, J. Appl. Phys., 1981, 52(5), p 3363-3374

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Ghaei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rahmati, S., Ghaei, A. The Use of Particle/Substrate Material Models in Simulation of Cold-Gas Dynamic-Spray Process. J Therm Spray Tech 23, 530–540 (2014). https://doi.org/10.1007/s11666-013-0051-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-013-0051-4

Keywords

Navigation