Skip to main content
Log in

Sn-Doped In2O3 Nanocrystalline Thin Films Deposited by Spray Pyrolysis: Microstructural, Optical, Electrical, and Formaldehyde-Sensing Characteristics

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Undoped and Sn-doped (1, 1.5 and 2 at.%) indium oxide (In2O3) thin films have been grown by the chemical spray pyrolysis technique on cleaned glass substrates using indium nitrate [In(NO3)3] and stannic tetrachloride hydrated (SnCl4·5H2O) as the host and dopant precursors, respectively, and deionized water as the solvent. Structural characterization using x-ray diffraction reveals that the films possess cubic structure, with the average crystallite size in the range 10-14 nm. The surface morphology and roughness of the films have been investigated by means of an atomic force microscope. UV-Vis measurements indicate an enhancement in the optical transmittance in the visible region on Sn doping. Further, the doping effect has been found to substantially reduce the electrical resistance to a few orders of magnitude of the undoped In2O3 film. We report a simultaneous improvement in both the optical and electrical properties of indium oxide thin film due to the doping of Sn ions. These results indicate that Sn-doped In2O3 thin film can be a potential candidate for use in various optoelectronic devices. Among all the films examined, the 1 at.% Sn-doped film shows the maximum response (~91%) at 300 °C for 80 ppm concentration of formaldehyde in air.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. D. Beena, K.J. Lethy, R. Vinodkumar, V.P. Mahadevan Pillai, V. Ganesan, D.M. Phase, and S.K. Sudheer, Effect of Substrate Temperature on Structural, Optical and Electrical Properties of Pulsed Laser Ablated Nanostructured Indium Oxide Films, Appl. Surf. Sci., 2009, 255, p 8334-8342

    Article  CAS  Google Scholar 

  2. A. Walsh, J.L.F. Da Silva, S.-H. Wei, C. Korber, A. Klein, L.F.J. Piper, A. DeMasi, K.E. Smith, G. Panaccione, P. Torelli, D.J. Payne, A. Bourlange, and R.G. Egdell, Nature of the Band Gap of In2O3 Revealed by First-Principles Calculations and X-ray Spectroscopy, Phys. Rev. Lett., 2008, 100, p 167402

    Article  Google Scholar 

  3. P.K. Manoj, K.G. Gopchandran, P. Koshy, V.K. Vaidyan, and B. Joesph, Growth and Characterization of Indium Oxide Thin Films Prepared by Spray Pyrolysis, Opt. Mater., 2006, 28, p 1405-1411

    Article  CAS  Google Scholar 

  4. C.H. Lee and C.S. Huang, Spray Pyrolysis Deposition for Indium Oxide Doped with Different Impurities, Mater. Sci. Eng. B, 1994, 22, p 233-240

    Article  Google Scholar 

  5. C. Wang, V. Cimalla, G. Cherkashinin, H. Romanus, M. Ali, and O. Ambacher, Transparent Conducting Indium Oxide Thin Films Grown by Low-Temperature Metal Organic Chemical Vapor Deposition, Thin Solid Films, 2007, 515, p 2921-2925

    Article  CAS  Google Scholar 

  6. V.S. Vaishnav, P.D. Patel, and N.G. Patel, Preparation and Characterization of Indium Tin Oxide Thin Films for Their Application as Gas Sensors, Thin Solid Films, 2005, 487, p 277-282

    Article  CAS  Google Scholar 

  7. B.-C. Kim, J.-Y. Kim, D.-D. Lee, J.-O. Lim, and J.-S. Huh, Effect of Crystal Structures on Gas Sensing Properties of Nanocrystalline ITO Thick Films, Sens. Actuators B, 2003, 89, p 180-186

    Article  CAS  Google Scholar 

  8. S. Parthiban, V. Gokulakrishnan, K. Ramamurthi, E. Elangovan, R. Martins, E. Fortunato, and R. Ganesan, High Near-Infrared Transparent Molybdenum-Doped Indium Oxide Thin Films for Nanocrystalline Silicon Solar Cell Applications, Sol. Energy Mater. Sol. Cells, 2009, 93, p 92-97

    Article  CAS  Google Scholar 

  9. E. Elangovan, G. Gonçalves, R. Martins, and E. Fortunato, RF Sputtered Wide Work Function Indium Molybdenum Oxide Thin Films for Solar Cell Applications, Sol. Energy, 2009, 83, p 726-731

    Article  CAS  Google Scholar 

  10. Q. Zhang, X. Li, and G. Li, Dependence of Electrical and Optical Properties on Thickness of Tungsten-Doped Indium Oxide Thin Films, Thin Solid Films, 2008, 517, p 613-616

    Article  CAS  Google Scholar 

  11. J.K. Kim and Y.G. Choi, Eu-Doped Indium Tin Oxide Thin Films Fabricated by Sol-Gel Technique, Thin Solid Films, 2009, 517, p 5084-5086

    Article  CAS  Google Scholar 

  12. B. Zhang, X. Dong, X. Xu, P. Zhao, and J. Wu, Characteristics of Zirconium-Doped Indium Tin Oxide Thin Films Deposited by Magnetron Sputtering, Sol. Energy Mater. Sol. Cells, 2008, 92, p 1224-1229

    Article  CAS  Google Scholar 

  13. A. Moses Ezhil Raj, V. Senthilkumar, V. Swaminathan, J. Wollschläger, M. Suendorf, M. Neumann, M. Jayachandran, and C. Sanjeeviraja, Studies on Transparent Spinel Magnesium Indium Oxide Thin Films Prepared by Chemical Spray Pyrolysis, Thin Solid Films, 2008, 517, p 510-516

    Article  Google Scholar 

  14. N.G. Pramod, S.N. Pandey, and P.P. Sahay, Structural, Optical and Methanol Sensing Properties of Sprayed In2O3 Nanoparticle Thin Films, Ceram. Int., 2012, 38, p 4151-4158

    Article  CAS  Google Scholar 

  15. D. Beena, K.J. Lethy, R. Vinodkumar, A.P. Detty, V.P. Mahadevan Pillai, and V. Ganesan, Photoluminescence in Laser Ablated Nanostructured Indium Oxide Thin Films, J. Alloy. Compd., 2010, 489, p 215-223

    Article  CAS  Google Scholar 

  16. C. Coutal, A. Azema, and J.-C. Roustan, Fabrication and Characterization of ITO Thin Films Deposited by Excimer Laser Evaporation, Thin Solid Films, 1996, 288, p 248-253

    Article  CAS  Google Scholar 

  17. B. Radha Krishna, T.K. Subramanyam, B. Srinivasulu Naidu, and S. Uthanna, Effect of Substrate Temperature on the Electrical and Optical Properties of dc Reactive Magnetron Sputtered Indium Oxide Films, Opt. Mater., 2000, 15, p 217-224

    Article  CAS  Google Scholar 

  18. I. Hotovy, J. Pezoldt, M. Kadlecikova, T. Kups, L. Spiess, J. Breza, E. Sakalauskas, R. Goldhahn, and V. Rehacek, Structural Characterization of Sputtered Indium Oxide Films Deposited at Room Temperature, Thin Solid Films, 2010, 518, p 4508-4511

    Article  CAS  Google Scholar 

  19. M.A. Flores-Mendoza, R. Castanedo-Perez, G. Torres-Delgado, J. Marquez Marin, and O. Zelaya-Angel, Influence of the Annealing Temperature on the Properties of Undoped Indium Oxide Thin Films Obtained by the Sol-Gel Method, Thin Solid Films, 2008, 517, p 681-685

    Article  CAS  Google Scholar 

  20. S. Jana and P.K. Biswas, Effect of Zr (IV) Doping on the Optical Properties of Sol-Gel Based Nanostructured Indium Oxide Films on Glass, Mater. Chem. Phys., 2009, 117, p 511-516

    Article  CAS  Google Scholar 

  21. M.-M. Bagheri-Mohagheghi and M. Shokooh-Saremi, The Effect of High Acceptor Dopant Concentration of Zn2+ on Electrical, Optical and Structural Properties of the In2O3 Transparent Conducting Thin Films, Semicond. Sci. Technol., 2003, 18, p 97-103

    Article  CAS  Google Scholar 

  22. M. Girtan, Investigations on the Optical Constants of Indium Oxide Thin Films Prepared by Ultrasonic Spray Pyrolysis, Mater. Sci. Eng. B, 2005, 118, p 175-178

    Article  Google Scholar 

  23. C.S. Prajapati, S.N. Pandey, and P.P. Sahay, Sensing of LPG with Nanostructured Zinc Oxide Thin Films Grown by Spray Pyrolysis Technique, Physica B, 2011, 406, p 2684-2688

    Article  CAS  Google Scholar 

  24. V. Gupta and A. Mansingh, Influence of Postdeposition Annealing on the Structural and Optical Properties of Sputtered Zinc Oxide Film, J. Appl. Phys., 1996, 80, p 1063-1073

    Article  CAS  Google Scholar 

  25. A. Goswami, Thin Film Fundamentals, New Age International, New Delhi, 1996

    Google Scholar 

  26. P.D.C. King, T.D. Veal, F. Fuchs, Ch.Y. Wang, D.J. Payne, A. Bourlange, H. Zhang, G.R. Bell, V. Cimalla, O. Ambacher, R.G. Egdell, F. Bechstedt, and C.F. McConville, Band Gap, Electronic Structure, and Surface Electron Accumulation of Cubic and Rhombohedral In2O3, Phys. Rev. B, 2009, 79, p 205211

    Article  Google Scholar 

  27. K. Arshak and I. Gaiden, Development of a Novel Gas Sensor Based on Oxide Thick Films, Mater. Sci. Eng. B, 2005, 118, p 44-49

    Article  Google Scholar 

  28. K.W. Zhou, X.L. Ji, N. Zhang, and X.R. Zhang, On-Line Monitoring of Formaldehyde in Air by Cataluminescence-Based Gas Sensors, Sens. Actuators B, 2006, 119, p 392-397

    Article  CAS  Google Scholar 

  29. H. Gonga, J.Q. Hua, J.H. Wang, C.H. Onga, and F.R. Zhub, Nano-Crystalline Cu-Doped ZnO Thin Film Gas Sensor for CO, Sens. Actuators B, 2006, 115, p 247-251

    Article  Google Scholar 

  30. N. Han, Y. Tian, X. Wu, and Y. Chen, Improving Humidity Selectivity in Formaldehyde Gas Sensing by a Two-Sensor Array Made of Ga-Doped ZnO, Sens. Actuators B, 2009, 138, p 228-235

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Institute Instrumentation Centre, Indian Institute of Technology, Roorkee, India, for providing XRD and AFM facilities. Financial support provided by the University Grants Commission, New Delhi, India, in the form of a major research project (No. 40-450/2011 (SR)) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. P. Sahay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pramod, N.G., Pandey, S.N. & Sahay, P.P. Sn-Doped In2O3 Nanocrystalline Thin Films Deposited by Spray Pyrolysis: Microstructural, Optical, Electrical, and Formaldehyde-Sensing Characteristics. J Therm Spray Tech 22, 1035–1043 (2013). https://doi.org/10.1007/s11666-013-9933-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-013-9933-8

Keywords

Navigation