Skip to main content
Log in

A Simplified Approach for the Determination of Critical Velocity for Cold Spray Processes

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

A simple technique employing the first law of thermodynamics was used to predict the critical impact velocity for cold spray processes based on material properties of the particles and substrates. It has been shown that during its interaction with the substrate, a particle should reach around 70% of its melting temperature to obtain good mechanical bonding. To characterize the results in a general way, a non-dimensionalization of the relevant parameters was conducted and validated to determine the combination of cold spray process variables required for the particle to reach the critical impact velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. A. Papyrin, V. Kosarev, S. Klinkov, A. Alkhimov, and V. Fomin, Cold Spray Technology, 1st ed., Elsevier, Amsterdam, 2007

    Google Scholar 

  2. A.P. Alkhimov, A.N. Papyrin, V.F. Kosarev, and N.I. Nesterovich, Gas Dynamic Spraying Method for Applying a Coating, U.S. Patent 5 302 414, 1994

  3. H. Assadi, F. Gärtner, T. Stoltenhoff, and H. Kreye, Bonding Mechanism in Cold Gas Spraying, Acta Mater., 2003, 51, p 4379-4394

    Article  Google Scholar 

  4. T. Schmidt, F. Gärtner, H. Assadi, and H. Kreye, Development of a Generalized Parameter Window for Cold spray Deposition, Acta Mater., 2005, 54, p 729-742

    Article  Google Scholar 

  5. T. Han, Z. Zhao, B.A. Gillispie, and J.R. Smith, Effects of Spray Condition on Coating Formation by Kinetic Spray Process, Therm. Spray Technol., 2004, 14, p 373-383

    Article  Google Scholar 

  6. L. Ajdelsztajn, B. Jodoin, P. Richer, E. Sansoucy, and E.J. Lavernia, Cold Gas Dynamic Spraying of Iron-Base Amorphous Alloy, Therm. Spray Technol., 2006, 15, p 495-500

    Article  Google Scholar 

  7. Y.A. Cengel and M. Boles, Thermodynamics: An Engineering Approach, 1st ed., McGraw-Hill, New York, 2004, p 166-181

    Google Scholar 

  8. Material Properties Data Base, www.matweb.com

  9. M. Grujicica, J.R. Saylor, D.E. Beasley, W.S. DeRosset, and D. Helfritch, Computational Analysis of the Interfacial Bonding Between Feed-Powder Particles and the Substrate in the Cold-Gas Dynamic-Spray Process, Appl. Surf. Sci., 2003, 219, p 211-227

    Article  Google Scholar 

  10. A. Alhulaifi, G. Buck, and W. Arbegast, Numerical and Experimental Investigation of Cold Spray Gas Dynamic Effects for Polymer Coating, Therm. Spray Technol., 2012, 21, p 852-862

    Article  Google Scholar 

  11. T. Schmidt, H. Assadi, F. Gärtner, H. Richter, T. Stoltenhoff, H. Kreye, and T. Klassen, From Particle Acceleration to Impact and Bonding in Cold Spraying, ASM Int., 2009, 18, p 794-808

    Google Scholar 

  12. P.W. Bridgman, Dimensional Analysis, Yale University Press, New Haven, 1931

    Google Scholar 

  13. A.P. Alkhimov, V.F. Kosarev, and S.V. Klinkov, The Features of Cold Spray Nozzle Design, ASM Int., 2000, 10, p 375-381

    Google Scholar 

  14. C.-J. Lia, W.-Y. Lia, Y.-Y. Wanga, G.-J. Yanga, and H. Fukanuma, A Theoretical Model for Prediction of Deposition Efficiency in Cold Spraying, Thin Solid Films, 2005, 489, p 79-85

    Article  Google Scholar 

  15. H. Katanoda, M. Fukuhara, and N. Iino, Numerical Study of Combination Parameters for Particle Impact Velocity and Temperature in Cold Spray, Therm. Spray Technol., 2007, 16, p 627-633

    Article  Google Scholar 

  16. D. Helfritch and V. Champagne, Optimal Particle for the Cold Spray Process, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD

  17. A. Alhulaifi, Numerical and Experimental Characterization of the Cold Spray Process for Spraying Nano Particle Powders, Ph.D. dissertation, South Dakota School of Mines and Technology, 2011.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdulaziz S. Alhulaifi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alhulaifi, A.S., Buck, G.A. A Simplified Approach for the Determination of Critical Velocity for Cold Spray Processes. J Therm Spray Tech 23, 1259–1269 (2014). https://doi.org/10.1007/s11666-014-0128-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-014-0128-8

Keywords

Navigation