Skip to main content
Log in

Quality Designed Twin Wire Arc Spraying of Aluminum Bores

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

After 125 years of development in combustion engines, the attractiveness of these powerplants still gains a great deal of attention. The efficiency of engines has been increased continuously through numerous innovations during the last years. Especially in the field of motor engineering, consequent friction optimization leads to cost-effective fuel consumption advantages and a CO2 reduction. This is the motivation and adjusting lever of NANOSLIDE® from Mercedes-Benz. The twin wire arc-spraying process of the aluminum bore creates a thin, iron-carbon-alloyed coating which is surface-finished through honing. Due to the continuous development in engines, the coating strategies must be adapted in parallel to achieve a quality-conformed coating result. The most important factors to this end are the controlled indemnification of a minimal coating thickness and a homogeneous coating deposition of the complete bore. A specific system enables the measuring and adjusting of the part and the central plunging of the coating torch into the bore to achieve a homogeneous coating thickness. Before and after measurement of the bore diameter enables conclusions about the coating thickness. A software tool specifically developed for coating deposition can transfer this information to a model that predicts the coating deposition as a function of the coating strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

LDS:

Lichtbogendrahtspritzen (German word for “twin wire arc spraying”)

TWAS:

Twin wire arc spraying

NEDC:

New European driving cycle

OFAT:

One factor at time

DoE:

Design of experiments

CAE:

Computer-aided engineering

References

  1. K. Holmberg, P. Andersson, and A. Erdemir, Global Energy Consumption Due to Friction in Passenger Cars, Tribol. Int., 2012, 47, p 221-234

    Article  Google Scholar 

  2. J. Schommers, G. Doll, R. Weller, T. Behr, H. Scheib, M. Löffler, and J. Böhm, Optimizing Friction: The Basis for Safeguarding the Future of Combustion Engines, 33rd International Vienna Motor Symposium, Fortschritt-Berichte VDI, Reihe, 2012

  3. S. Beer, Aluminium-Motorblöcke: Konstruktionen, Werkstoffe, Giessverfahren und Zylinderlaufflächen-Technologien für Leichtbau-Pkw-Motoren, Landsberg/Lech: Verl. Moderne Industrie, 2005

  4. B. Gand, Beschichtung von Zylinderlaufflächen in Aluminium-Kurbelgehäusen, MTZ Motortech Z, 2011, 72(2), p 128-133

    Article  Google Scholar 

  5. J.V. Heberlein, Thermal Spray Fundamentals: From Powder to Part, Springer, New York, 2014

    Google Scholar 

  6. H. Fuchs and M. Wappelhorst, Leichtmetallwerkstoffe für hochbelastete Motorblöcke und Zylinderköpfe, Motortechnische Zeitschrift, 2003, 64(10), p 868-875

    Article  Google Scholar 

  7. K. Bobzin, F. Ernst, J. Zwick, T. Schlaefer, D. Cook, K. Nassenstein, A. Schwenk, F. Schreiber, T. Wenz, G. Flores, and M. Hahn, Coating Bores of Light Metal Engine Blocks with a Nanocomposite Material using the Plasma Transferred Wire Arc Thermal Spray Process, J. Therm. Spray Technol., 2008, 17(3), p 344-351

    Article  Google Scholar 

  8. E. Köhler, S. Beer, C. Klimesch, J. Niehues, and B. Sommer, Leichtbau beim Zylinderkurbelgehäuse für aktuelle und zukünftige Anforderungen, Motortechnische Zeitschrift, 2009, 70(10), p 712-721

    Article  Google Scholar 

  9. M. Hahn and A. Fischer, Characterization of Thermal Spray Coatings for Cylinder Running Surfaces of Diesel Engines, J. Therm. Spray Technol., 2010, 19(5), p 866-872

    Article  Google Scholar 

  10. K. Holdik, M. Hartweg, M. Michel, T. Behr, R. De Zolt, J. Böhm, and F. Spennemann, 125 Years of the Automobile-Daimler’s LDS Cylinder Track Opens up a New Chapter in Engine Construction, Bd. 1, p 46-50, 2011

  11. A. Heuberger, P. Izquierdo, T. Haug, T. Wittrowski, and F. Lampmann, Twin Wire Arc Spraying as a New Coating Technology for Liner-Free Cylinder Bores, Weld. Cut., 2004, 56(6), p 356-361

    Google Scholar 

  12. F. Eichler, A. Fürschuss, M. Hart, R. Schaich, B. Tschamon, R. Illenberger, M. Glose, and W. Zimmermann, Der Antriebsstrang des neuen C63 AMG, 29th International Vienna Motor Symposium, Fortschritt-Berichte VDI, Reihe, 2008

  13. J. Gindele, T. Ramsteiner, J. Fischer, and B. Tschamon, The New 2.0-l High-Performance Four-Cylinder Engine from Mercedes-AMG, MTZ Worldwide, 2013, 74(9), p 26-33

    Article  Google Scholar 

  14. W. Tillmann and B. Krebs, Influence of Handling Parameters on Coating Characteristics in Order to Produce Near-Net-Shape Wear Resistant Coatings, J. Therm. Spray Technol., 2012, 21(3–4), p 644-650

    Article  Google Scholar 

  15. E. DIN, 657, Thermisches Spritzen—Begriffe, Einteilung, 2005

  16. D. Nowotni, C. Wanke, T. Haug, and P. Izquierdo, Internal burner, 2002

  17. A. Newbery, P. Grant, and R. Neiser, The Velocity and Temperature of Steel Droplets During Electric Arc Spraying, Surf. Coat. Technol., 2005, 195(1), p 91-101

    Article  Google Scholar 

  18. A. Pourmousa, J. Mostaghimi, A. Abedini, and S. Chandra, Particle Size Distribution in a Wire-Arc Spraying System, J. Therm. Spray Technol., 2005, 14(4), p 502-510

    Article  Google Scholar 

  19. D. Hale, W. Swank, and D. Haggard, In-Flight Particle Measurements of Twin Wire Electric Arc Sprayed Aluminum, J. Therm. Spray Technol., 1998, 7(1), p 58-63

    Article  Google Scholar 

  20. S.L. Toma, C. Bejinariu, R. Baciu, and S. Radu, The Effect of Frontal Nozzle Geometry and Gas Pressure on the Steel Coating Properties Obtained by Wire Arc Spraying, Surf. Coat. Technol., 2013, 220, p 266-270

    Article  Google Scholar 

  21. W. Tillmann, E. Vogli, and M. Abdulgader, The Correlation Between the Coating Quality and the Moving Direction of the Twin Wire Arc Spraying Gun, J. Therm. Spray Technol., 2010, 19(1–2), p 409-421

    Article  Google Scholar 

  22. N. Hussary and J. Heberlein, Effect of System Parameters on Metal Breakup and Particle Formation in the Wire Arc Spray Process, J. Therm. Spray Technol., 2007, 16(1), p 140-152

    Article  Google Scholar 

  23. H. Liao, Y. Zhu, R. Bolot, C. Coddet, and S. Ma, Size Distribution of Particles from Individual Wires and the Effects of Nozzle Geometry in Twin Wire Arc Spraying, Surf. Coat. Technol., 2005, 200(7), p 2123-2130

    Article  Google Scholar 

  24. M. Planche, H. Liao, and C. Coddet, Relationships Between In-Flight Particle Characteristics and Coating Microstructure with a Twin Wire Arc Spray Process and Different Working Conditions, Surf. Coat. Technol., 2004, 182(2–3), p 215-226

    Article  Google Scholar 

  25. J. König, M. Lahres, O. Methner, B. Wielage, and C. Rupprecht, Methoden zur exakten Positionierung von Beschichtungsaggregaten für eine qualitätsgerechte Beschichtung von Zylinderlaufbahnen, Werkstoffe und Werkstofftechnische Anwendungen, 2013

  26. B.J.J. Wappis, Taschenbuch Null-Fehler-Management, Hanser Fachbuchverlag, 2010

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes König.

Additional information

This article is an invited paper selected from presentations at the 2014 International Thermal Spray Conference, held May 21-23, 2014, in Barcelona, Spain, and has been expanded from the original presentation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

König, J., Lahres, M. & Methner, O. Quality Designed Twin Wire Arc Spraying of Aluminum Bores. J Therm Spray Tech 24, 63–74 (2015). https://doi.org/10.1007/s11666-014-0170-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-014-0170-6

Keywords

Navigation