Skip to main content
Log in

Application of Compressible Volume of Fluid Model in Simulating the Impact and Solidification of Hollow Spherical ZrO2 Droplet on a Surface

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Applications of hollow spherical particles in thermal spraying process have been developed in recent years, accompanied by attempts in the form of experimental and numerical studies to better understand the process of impact of a hollow droplet on a surface. During such process, volume and density of the trapped gas inside droplet change. The numerical models should be able to simulate such changes and their consequent effects. The aim of this study is to numerically simulate the impact of a hollow ZrO2 droplet on a flat surface using the volume of fluid technique for compressible flows. An open-source, finite-volume-based CFD code was used to perform the simulations, where appropriate subprograms were added to handle the studied cases. Simulation results were compared with the available experimental data. Results showed that at high impact velocities (U 0 > 100 m/s), the compression of trapped gas inside droplet played a significant role in the impact dynamics. In such velocities, the droplet splashed explosively. Compressibility effects result in a more porous splat, compared to the corresponding incompressible model. Moreover, the compressible model predicted a higher spread factor than the incompressible model, due to planetary structure of the splat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Notes

  1. Note that higher values of E mix indicate incompressibility.

Abbreviations

Re :

Reynolds number

We :

Weber number

M :

Mach number

E :

Bulk modulus of elasticity (Pa)

\( \alpha \) :

Volume of fluid function

P :

Pressure (Pa)

\( \vec{V} \) :

Continuum velocity vector (m/s)

U 0 :

Initial impact velocity (m/s)

ψ :

Isentropic compressibility factor (s2/m2)

z :

Compressibility factor

T :

Temperature (K)

R :

Gas constant (J/kg K)

a :

Speed of sound (m/s)

\( \vec{F}_{\text{vol}} \) :

Continuum surface tension force (kg/m2 s2)

H :

Enthalpy (J/kg)

k :

Thermal conductivity (W/m K)

K E :

Kinetic energy (J/kg)

θ :

Fraction of liquid inside the droplet

L :

Total latent heat of fusion (J/kg)

T l :

Liquidus temperature (K)

T m :

Solidus temperature (K)

C :

Mushy zone constant

C p :

Specific heat capacity (J/kg K)

D 0 :

Initial droplet diameter (μm)

d 0 :

Initial void diameter (μm)

α :

Volume of fluid function

μ :

Dynamic viscosity (kg/m s)

ρ :

Density (kg/m3)

σ :

Surface tension (N/m)

d:

Droplet

g:

Gas

mix:

Mixture

ise:

Isentropic

iso:

Isothermal

eff:

Effective

s:

Solid

l:

Liquid

0:

Initial

References

  1. T.C.-M. Wu, M. Bussmann, and J. Mostaghimi, The Impact of a Partially Molten YSZ Particle, J. Therm. Spray Technol., 2009, 18(5-6), p 957-964

    Article  Google Scholar 

  2. M. Friis, C. Persson, and J. Wigren, Influence of Particle In-Flight Characteristics on the Microstructure of Atmospheric Plasma Sprayed Yttria Stabilized ZrO 2, Surf. Coat. Technol., 2001, 141(2), p 115-127

    Article  Google Scholar 

  3. O.P. Solonenko, I.P. Gulyaev, and A.V. Smirnov, Plasma Processing and Deposition of Powdered Metal Oxides Consisting of Hollow Spherical Particles, Tech. Phys. Lett., 2008, 34(12), p 1050-1052

    Article  Google Scholar 

  4. F.N. Longo, N.F. Bader, and M.R. Dorfman, Hollow Sphere Ceramic Particles For Abradable Coatings. Google Patents (1984)

  5. P.-H. Gao, Y.-G. Li, C.-J. Li, G.-J. Yang, and C.-X. Li, Influence of Powder Porous Structure on the Deposition Behavior of Cold-Sprayed WC-12Co Coatings, J. Therm. Spray Technol., 2008, 17(5–6), p 742-749

    Article  Google Scholar 

  6. O.P. Solonenko and A.V. Smirnov, Spreading and Solidification of Hollow Molten Droplet Under Its Impact onto Substrate: Computer Simulation and Experiment. In: COMPLEX SYSTEMS: 5th International Workshop on Complex Systems, AIP Publishing, pp. 561-568 (2008)

  7. K. Shinoda and H. Murakami, Splat Morphology of Yttria-Stabilized Zirconia Droplet Deposited via Hybrid Plasma Spraying, J. Therm. Spray Technol., 2010, 19(3), p 602-610

    Article  Google Scholar 

  8. M. Pasandideh-Fard, S. Chandra, and J. Mostaghimi, A Three-Dimensional Model of Droplet Impact and Solidification, Int. J. Heat Mass Transfer, 2002, 45(11), p 2229-2242

    Article  Google Scholar 

  9. Y. Zheng, Q. Li, Z. Zheng, J. Zhu, and P. Cao, Modeling the Impact, Flattening and Solidification of a Molten Droplet on a Solid Substrate During Plasma Spraying, Appl. Surf. Sci., 2014, 317, p 526-533

    Article  Google Scholar 

  10. Y. Liao, Y. Zheng, Z. Zheng, and Q. Li, Numerical Simulation of Zirconia Splat Formation and Cooling During Plasma Spray Deposition, Appl. Phys. A., 2016, 122(7), p 1-7

    Article  Google Scholar 

  11. S. Vincent, C. Le Bot, F. Sarret, E. Meillot, J.-P. Caltagirone, and L. Bianchi, Penalty and Eulerian-Lagrangian VOF Methods for Impact and Solidification of Metal Droplets Plasma Spray Process, Comput. Fluids., 2015, 113, p 32-41

    Article  Google Scholar 

  12. M. Bussmann, S. Chandra, and J. Mostaghimi, Modeling the Splash of a Droplet Impacting a Solid Surface, Phys. Fluids, 2000, 12(12), p 3121-3132

    Article  Google Scholar 

  13. S. Shakeri and S. Chandra, Splashing of Molten Tin Droplets on a Rough Steel Surface, Int. J. Heat Mass Transfer., 2002, 45(23), p 4561-4575

    Article  Google Scholar 

  14. L. Xu, W.W. Zhang, and S.R. Nagel, Drop Splashing on a Dry Smooth Surface, Phys. Rev. Lett., 2005, 94(18), p 184505

    Article  Google Scholar 

  15. S.S. Yoon and P.E. DesJardin, Modelling Spray Impingement Using Linear Stability Theories for Droplet Shattering, Int. J. Numer. Methods Fluids., 2006, 50(4), p 469-489

    Article  Google Scholar 

  16. J. Liu, H. Vu, S.S. Yoon, R.A. Jepsen, and G. Aguilar, Splashing Phenomena During Liquid Droplet Impact. Atomization. Sprays., 2010, 20(4)

  17. I.P. Gulyaev, O.P. Solonenko, P.Y. Gulyaev, and A.V. Smirnov, Hydrodynamic Features of the Impact of a Hollow Spherical Drop on a Flat Surface, Tech. Phys. Lett., 2009, 35(10), p 885-888

    Article  Google Scholar 

  18. I. Gulyaev and O. Solonenko, Hollow Droplets Impacting onto a Solid Surface, Exp. Fluids, 2013, 54(1), p 1-12

    Article  Google Scholar 

  19. A. Kumar, S. Gu, and S. Kamnis, Simulation of Impact of a Hollow Droplet on a Flat Surface, Appl. Phys. A, 2012, 109(1), p 101-109

    Article  Google Scholar 

  20. A. Kumar and S. Gu, Modelling Impingement of Hollow Metal Droplets onto a Flat Surface, Int. J. Heat Fluid Flow, 2012, 37, p 189-195

    Article  Google Scholar 

  21. A. Kumar, S. Gu, H. Tabbara, and S. Kamnis, Study of Impingement of Hollow ZrO2 Droplets onto a Substrate, Surf. Coat. Technol., 2013, 220, p 164-169

    Article  Google Scholar 

  22. A. Kumar and S. Gu, Porous Surfaces Via Impinging and Solidifying Molten Hollow Melt Droplets on Substrates, Indian Met., 2012, 65(6), p 771-775

    Article  Google Scholar 

  23. C. Zhang, C.-J. Li, H. Liao, M.-P. Planche, C.-X. Li, and C. Coddet, Effect of In-Flight Particle Velocity on the Performance of Plasma-Sprayed YSZ Electrolyte Coating for Solid Oxide Fuel Cells, Surf. Coat. Technol., 2008, 202(12), p 2654-2660

    Article  Google Scholar 

  24. P.H. Oosthuizen and W.E. Carscallen, Compressible Fluid Flow, McGraw-Hill, New York, 1997

    Google Scholar 

  25. R.W. Fox and A.T. McDonald, Introduction to Fluid Mechanics, Wiley, New York, 1994

    Google Scholar 

  26. O.P. Solonenko, I.P. Gulyaev, and A.V. Smirnov, Thermal Plasma Processes for Production of Hollow Spherical Powders: Theory and Experiment, J. Therm. Sci. Technol., 2011, 6(2), p 219-234

    Article  Google Scholar 

  27. S. Miller, H. Jasak, D. Boger, E. Paterson, and A. Nedungadi, A Pressure-Based, Compressible, Two-Phase Flow Finite Volume Method for Underwater Explosions, Comput. Fluids, 2013, 87, p 132-143

    Article  Google Scholar 

  28. A.A.E. Vasserman, Y.Z. Kazavchinskii, and V.A. Rabinovich, Thermophysical Properties of Air and Air Components (Teplofizicheskie Svoistva Vozdukha i ego Komponentov), 1971

  29. J.U. Brackbill, A Continuum Method for Modeling Surface Tension, J. Comput. Phys., 1992, 100(2), p 335-354

    Article  Google Scholar 

  30. J.D. Anderson and J. Wendt, Computational Fluid Dynamics, Springer, Berlin, 1995

    Google Scholar 

  31. V.R. Vollerand and C. Prakash, A Fixed Grid Numerical Modelling Methodology for Convection-Diffusion Mushy Region Phase-Change Problems, Int. J. Heat Mass Transf., 1987, 30(8), p 1709-1719

    Article  Google Scholar 

  32. F. Rösler and D. Brüggemann, Shell-and-Tube Type Latent Heat Thermal Energy Storage: Numerical Analysis and Comparison with Experiments, Heat Mass Transf., 2011, 47(8), p 1027-1033

    Article  Google Scholar 

  33. R. OpenFOAM, The Open Source CFD Toolbox, The OpenFOAM Foundation Homepage: http://openfoam.com, 2011

  34. S. Kamnis and S. Gu, Numerical Modelling of Droplet Impingement, J. Phys. D Appl. Phys., 2005, 38(19), p 3664-3673

    Article  Google Scholar 

  35. S. Chandra and C. Avedisian, On the Collision of a Droplet with a Solid Surface, In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences., 1991, The Royal Society, p 13-41

  36. S. Thoroddsen, T. Etoh, K. Takehara, N. Ootsuka, and Y. Hatsuki, The Air Bubble Entrapped Under a Drop Impacting on a Solid Surface, J. Fluid Mech., 2005, 545, p 203-212

    Article  Google Scholar 

  37. Y. Liu, P. Tan, and L. Xu, Compressible air entrapment in high-speed drop impacts on solid surfaces, J. Fluid Mech., 2013, p 716

  38. E. Li and S.T. Thoroddsen, Time-Resolved Imaging of a Compressible Air Disc Under a Drop Impacting on a Solid Surface, J. Fluid Mech., 2015, 780, p 636-648

    Article  Google Scholar 

  39. H. Guo, S. Kuroda, and H. Murakami, Microstructures and Properties of Plasma-Sprayed Segmented Thermal Barrier Coatings, J. Am. Ceram. Soc., 2006, 89(4), p 1432-1439

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Davazdah Emami.

Appendix

Appendix

To obtain the bulk modulus elasticity of mixture, first of all the modulus of elasticity of each phase is written as (Ref 25):

$$ E_{\text{l}} = \frac{{ - {\text{d}}P}}{{\left( {\frac{{{\text{d}}V_{\text{l}} }}{{V_{\text{l}} }}} \right)}}, $$
(21)
$$ E_{\text{g}} = \frac{{ - {\text{d}}P}}{{\left( {\frac{{{\text{d}}V_{\text{g}} }}{{V_{\text{g}} }}} \right)}}. $$
(22)

Then, the bulk modulus of elasticity of mixture is defined as:

$$ E_{\text{mix}} = \frac{{ - {\text{d}}P}}{{\left( {\frac{{{\text{d}}V}}{V}} \right)}}, $$
(23)

where \( V = V_{\text{g}} + V_{\text{l}} \) and \( {\text{d}}V = {\text{d}}V_{\text{g}} + {\text{d}}V_{\text{l}} \). Using \( {\text{d}}V_{\text{l}} \) and \( {\text{d}}V_{\text{g}} \) from relations (21) and (22) results in:

$$ {\text{d}}V = {\text{d}}V_{\text{g}} + {\text{d}}V_{\text{l}} = - \left( {\frac{{V_{\text{l}} {\text{d}}P}}{{E_{\text{l}} }} + \frac{{V_{\text{g}} {\text{d}}P}}{{E_{\text{g}} }}} \right) = - \left( {\frac{V}{{E_{\text{l}} }} + \frac{{V_{\text{g}} }}{{E_{\text{g}} }}} \right){\text{d}}P. $$
(24)

Finally, from Eq 23 and 24 we have:

$$ E_{\text{mix}} = \frac{{ - {\text{d}}P}}{{\left( {\frac{{ - \left( {\frac{{V_{\text{l}} }}{{E_{\text{l}} }} + \frac{{V_{\text{g}} }}{{E_{\text{g}} }}} \right){\text{d}}P}}{{V_{\text{g}} + V_{\text{l}} }}} \right)}} = \frac{1}{{\frac{{V_{\text{l}} }}{{V_{\text{g}} + V_{\text{l}} }}\frac{1}{{E_{\text{l}} }} + \frac{{V_{\text{g}} }}{{V_{\text{g}} + V_{\text{l}} }}\frac{1}{{E_{\text{g}} }}}} = \frac{1}{{\frac{1 - p}{{E_{\text{l}} }} + \frac{p}{{E_{\text{g}} }}}}. $$
(25)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safaei, H., Emami, M.D., Jazi, H.S. et al. Application of Compressible Volume of Fluid Model in Simulating the Impact and Solidification of Hollow Spherical ZrO2 Droplet on a Surface. J Therm Spray Tech 26, 1959–1981 (2017). https://doi.org/10.1007/s11666-017-0632-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-017-0632-8

Keywords

Navigation