Skip to main content
Log in

High Temperature Thermodynamic Properties of ZnTe(s)

  • Basic and Applied Research
  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

We have gathered the partial pressure, Knudsen cell, and emf measurements on ZnTe(s) from which the Gibbs energy of formation can be calculated. Published partial pressures of diatomic tellurium have been adjusted to take account of a subsequently published third law analysis of tellurium. The equation used to calculate the total pressure from the rate of mass loss from an extensive set of Knudsen cell measurements has been corrected to give a 5% increase in total pressure and the Gibbs energy of formation has been recalculated. A high temperature heat capacity for ZnTe(s) has been selected from the published data. The Gibbs energies of formation as a function of temperature have then been fit using a third law analysis to give two essentially equally good but extreme fits. In the first, the standard enthalpy of formation agrees with the calorimetric value of −119 kJ/mol but the standard entropy of ZnTe(s) is low by 2-3 J/mol K. In the second, the standard enthalpy of formation is more positive than the calorimetric values by about 3 kJ/mol but the standard entropy of ZnTe(s) is 82 J/mol K and close to the value from low temperature heat capacity measurements. We select values of −119.49 kJ/mol for the standard enthalpy of formation and 78.23 J/mol K for the standard entropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T.C. Yu and R.F. Brebrick, The Hg-Cd-Zn-Te Phase Diagram, J. Phase Equilib., 1992, 13(2), p 476-496

    Article  Google Scholar 

  2. T.C. Yu and R.F. Brebrick, Supplement, The Hg-Cd-Zn-Te Phase Diagram, J. Phase Equilib., 1993, 14(3), p 271-272

    Article  Google Scholar 

  3. Robert.F. Brebrick, High Temperature Thermodynamic Data for CdTe(s), J. Phase Equilib. Diffus., 2010, 31(3), p 260-269

    Article  Google Scholar 

  4. R.F. Brebrick, The Cd-Te Phase Diagram, Calphad, 2010, 34, p 434-440

    Article  Google Scholar 

  5. R.F. Brebrick, Third Law Analysis of the Crystal-Liquid-Vapor Equilibrium for Tellurium, High Temp. Sci., 1988, 25, p 187-197

    Google Scholar 

  6. G. Bardi and G. Trionfetti, Vapor Pressure and Sublimation Enthalpy of Zinc Selenide and Zinc Telluride by Thermogravimetric Knudsen Effusion Method, Thermochim. Acta, 1990, 157, p 287-294

    Article  Google Scholar 

  7. R.F. Brebrick, Partial Pressures of Zn and Te2 over ZnTe up to 917°C, J. Electrochem. Soc., 1969, 116(9), p 1274-1279

    Article  Google Scholar 

  8. K.C. Mills, Thermodynamic Properties of Inorganic Sulfides, Selenides and Tellurides, Butterworths, London, 1974

    Google Scholar 

  9. A.V. Davydov, M.H. Rand, and B.B. Argent, Review of the Heat Capacity of Tellurium, Calphad, 1995, 19(3), p 375-387

    Article  Google Scholar 

  10. L.S. Brooks, J. Am. Chem. Soc., 1952, 74, p 227

    Article  Google Scholar 

  11. R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser, and K. Kelley, Selected Values for the Thermodynamic Properties of the Elements, American Society for Metals, Metals Park, 1973

    Google Scholar 

  12. R. Hultgren, R.L. Orr, P.D. Anderson, and K. Kelley, Selected Values of Thermodynamic Properties of Metals and Alloys, Wiley, New York, 1963

    Google Scholar 

  13. A.F. Demidenko and A.K. Mal’tsev, Heat Capacity of Zinc Telluride in the Range 56-300 K. Entropy and Enthalpy of ZnTe, CdS, CdSe, CdTe, Izv. Akad. Nauk SSR, Neorg. Mater., 1969, 5, p 158-160

    Google Scholar 

  14. A.S. Malkova, Vl.V. Zharov, G.I. Smoilova, and A.S. Pashinkin, Specific Heat of Zinc and Cadmium Tellurides in the Range 360-760 K, Russ. J Phys Chem, 1989, 63(1), p 21

    Google Scholar 

  15. A.S. Pashinkin, A.S. Malkova, and M.S. Mikhailova, The Heat Capacity of Zinc and Cadmium Chalcogenides (ZnTe, CdSe, and CdTe), Zhurnal Fizicheskoi Khimii, 2002, 76(4), p 638-642

    Google Scholar 

  16. K.S. Gavrichev, G.A. Sharpataya, V.N. Gaskov, J.H. Greenberg, T. Feltgen, M. Fiederle, and K.W. Benz, Thermodynamic Properties of ZnTe in the Temperature Range 15-925 K, Phys Stat. Sol. (b), 2002, 229(1), p 133-135

    Article  ADS  Google Scholar 

  17. K.S. Gavrichev, V.N. Guskov, J.H. Greenberg, T. Feltgen, M. Fiederle, and K.W. Benz, Low Temperature Heat Capacity of ZnTe, J. Chem. Thermodyn., 2002, 34(12), p 2041-2047

    Article  Google Scholar 

  18. K. Yamaguchi, K. Kameda, Y. Takeda, and K. Itagaki, Measurements of the High Temperature Heat Content of the II-VI, and IV-VI (II, Zn, Cd, IV: Sn.Pb VI:Te)Compounds, Mat. Trans. JIM, 1994, 35(2), p 124-188

    Google Scholar 

  19. K. Yamaguchi, Thermodynamic Investigation of Zn-Te Alloys by Calorimetry, Netsu Sokutei, 2004, 31(3), p 100-107

    Google Scholar 

  20. O. Kubaschewski, The Thermochemistry of Alloys. IX, Z. Elektrochem., 1941, 47, p 623-630

    Google Scholar 

  21. M.J. Pool, Calorimetric Investigation of Cadmium, Silver, and Zinc Tellurides, Trans. Met. Soc. AIME, 1965, 233, p 1711-1715

    Google Scholar 

  22. A. Nasar and M. Shamsuddin, Investigation of the Thermodynamic Properties of Zinc Chalcogenides, Thermochim. Acta, 1992, 205, p 157-169

    Article  Google Scholar 

  23. J.C. Irwin and J. LaCombe, Specific Heats of ZnTe, ZnSe, and GaP, J. Appl. Phys., 1974, 45(2), p 567-571

    Article  ADS  Google Scholar 

  24. R.A. Reynolds, D. Stroud, and D.A. Stevenson, Phase Equilibria in the Zinc-Tellurium System, J. Electrochem. Soc., 1967, 114(12), p 1281-1287

    Article  Google Scholar 

  25. R.F. Brebrick, Partial Pressures in the Cadmium-Telluride and Zinc-Telluride Systems, J. Electrochem. Soc., 1971, 118(12), p 2014-2020

    Article  Google Scholar 

  26. I. Katayama, T. Inomoto, Z. Kozuka, and T. Iida, Activity Measurements of Zn in ZnTe-CdTe Solid Solutions by EMF Method, Mater. Trans., 1991, 32(2), p 169-173

    Google Scholar 

  27. C.L. McCabe, Equilibrium Pressure Measurements above ZnS from 680° to 825°C, J. Met., 1954, 200, p 969

    Google Scholar 

  28. P. Goldfinger and M. Jeunehomme, Mass Spectrographic and Knudsen Cell Vaporization Studies of Group 2B-6B Compounds, Trans. Faraday Soc., 1963, 59, p 2851-2867

    Article  Google Scholar 

  29. J.H. McAteer and Harry. Seltz, Thermodynamic Properties of the Tellurides of Zinc, Cadmium, Tin, and Lead, J. Am. Chem. Soc., 1936, 58, p 2081-2084

    Article  Google Scholar 

  30. L.A. Zabdyr, Thermodynamics and Phase Diagram of the Psuedobinary ZnTe-CdTe System, J. Electrochem. Soc., 1984, 131(9), p 2157-2160

    Article  Google Scholar 

  31. A. Nasar and M. Shamsuddin, Thermodynamic Properties of ZnTe, J. Less Common Met., 1990, 161, p 93-99

    Article  Google Scholar 

  32. Z.N. Davidson, Statistical Mechanics, McGraw-Hill Book Co., New York, 1962, p 315-321

    Google Scholar 

  33. Y.G. Sha, K.T. Chen, R. Fang, and R.F. Brebrick, Second Virial Coefficient and Fugacity of Tellurium Diatomic Molecule Te2(g) Near 1273 K, High Temp. Sci., 1988, 25(3), p 153-161

    Google Scholar 

  34. Su. Ching-Hua, Yu. Huang, and R.F. Brebrick, Interatomic Potentials for Zn2 from the Absorption Spectra of the 213.8 nm Line, J. Phys. B, 1985, 18, p 3187-3195

    Article  ADS  Google Scholar 

  35. J.O. Hirschfelder, C.F. Curtis, and R.B. Bird, Molecular Theory of Gases, Wiley, New York, Second Printing, Corrected, with Notes Added, March 1964

  36. T. Feltgen, J.H. Greenberg, A.N. Guskov, M. Fiederle, and K.W. Benz, P_T_X Phase Equilibrium Studies in Zn-Te for Crystal Growth by the Markov Method, Int. J. Inorg. Mater., 2001, 3, p 1241-1244

    Article  Google Scholar 

  37. J.A. Nelder and R. Mead, A Simplex Method for Function Minimization, Comput. J., 1965, 7(4), p 308-313

    MATH  Google Scholar 

  38. J.A. Nelder and R. Mead, Errata, Comput. J., 1965, 8(1), p 27

    Google Scholar 

  39. D.G. Thomas and E.A. Sadowski, The High Temperature Conductivity of Zinc Telluride in Zinc Vapor, Phys. Chem. Solids, 1964, 25, p 395-400

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert F. Brebrick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brebrick, R.F. High Temperature Thermodynamic Properties of ZnTe(s). J. Phase Equilib. Diffus. 32, 525–536 (2011). https://doi.org/10.1007/s11669-011-9963-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-011-9963-1

Keywords

Navigation