Skip to main content
Log in

Heat Capacities of LiCu2O2 and CuO in the Temperature Range 323-773 K and Cu2O in the Temperature Range 973-1273 K

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

The Li-Cu-O system is a promising materials system for the development of new anode materials for lithium ion batteries based on copper oxides. The specific heat capacities of binary and ternary oxides in this system are required to generate thermodynamic descriptions using the CALPHAD method. Additionally, heat capacity data can be used to support development of thermal management systems for the lithium ion batteries based on these materials. In this study, differential scanning calorimetry was used to measure the heat capacities of the binary copper oxides and of the ternary LiCu2O2. The heat capacity of CuO was measured from 323 to 773 K and that of Cu2O was measured from 973 to 1273 K. The heat capacity of CuO is in good agreement with literature data. However, the heat capacity of Cu2O is slightly lower than that calculated using CALPHAD-based thermodynamic descriptions of the Cu-O system but higher than that determined using ab initio calculations. Although the synthesis of single phase LiCu2O2 is difficult because of the mixed oxidation states of Cu, our heat capacity measurements show that the constituent additivity method can be used to estimate the heat capacity of LiCu2O2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J. Cabana, L. Monconduit, D. Larcher, and R. Palacín, Beyond Intercalation-Based Li-Ion Batteries: State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions, Adv. Mater., 2010, 22, p. E170-E192

  2. P.G. Bruce, B. Scrosati, and J.-M. Tarascon, Nanomaterials for Rechargeable Lithium Batteries, Angew. Chem. Int. Ed., 2008, 47(16), p 2930-2946

    Article  Google Scholar 

  3. M. Armand and J.-M. Tarascon, Building Better Batteries, Nature, 2008, 451(7179), p 652-657

    Article  ADS  Google Scholar 

  4. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J.-M. Tarascon, Nano-Sizedtransition-Metaloxides as Negative-Electrode Materials for Lithium-Ion Batteries, Nature, 2000, 407, p 496-499

    Article  ADS  Google Scholar 

  5. S. Grugeon, S. Laruelle, R. Herrera-Urbina, L. Dupont, P. Poizot, and J.-M. Tarascon, Particle Size Effects on the Electrochemical Performance of Copper Oxides toward Lithium, J. Electrochem. Soc., 2001, 148(4), p A285-A292

    Article  Google Scholar 

  6. B. Laik, P. Poizot, and J.-M. Tarascon, The Electrochemical Quartz Crystal Microbalance as a Means for Studying the Reactivity of Cu2O Toward Lithium, J. Electrochem. Soc., 2002, 149(3), p A251-A255

    Article  Google Scholar 

  7. P. Poizot, S. Laruelle, S. Grugeon, and J.-M. Tarascon, Rationalization of the Low-Potential Reactivity of 3d-Metal-Based Inorganic Compounds Toward Li, J. Electrochem. Soc., 2002, 149(9), p A1212-A1217

    Article  Google Scholar 

  8. A. Débart, L. Dupont, R. Patrice, and J.-M. Tarascon, Reactivity of Transition Metal (Co, Ni, Cu) Sulphides Versus Lithium: The Intriguing Case of the Copper Sulphide, Solid State Sci., 2006, 8(6), p 640-651

    Article  ADS  Google Scholar 

  9. Y. Kim and J.B. Goodenough, Lithium Insertion into Transition-Metal Monosulfides: Tuning the Position of the Metal 4s Band, J. Phys. Chem. C, 2008, 112(38), p 15060-15064

    Article  Google Scholar 

  10. N. Pereira, L. Dupont, J.M. Tarascon, L.C. Klein, and G.G. Amatucci, Electrochemistry of Cu3N with Lithium: A Complex System with Parallel Processes, J. Electrochem. Soc., 2003, 150(9), p A1273-A1280

    Article  Google Scholar 

  11. Y. Oumellal, A. Rougier, G.A. Nazri, J.-M. Tarascon, and L. Aymard, Metal Hydrides for Lithium-Ion Batteries, Nat. Mater., 2008, 7(11), p 916-921

    Article  ADS  Google Scholar 

  12. S. Boyanov, M. Womes, L. Monconduit, and D. Zitoun, Mössbauer Spectroscopy and Magnetic Measurements As Complementary Techniques for the Phase Analysis of FeP Electrodes Cycling in Li-Ion Batteries, Chem. Mater., 2009, 21(15), p 3684-3692

    Article  Google Scholar 

  13. J.Y. Xiang, J.P. Tu, X.H. Huang, and Y.Z. Yang, A Comparison of Anodically Grown CuO Nanotube Film and Cu2O Film as Anodes for Lithium Ion Batteries, J. Solid State Electrochem., 2008, 12(7-8), p 941-945

    Article  Google Scholar 

  14. W. Gruner, J. Thomas, L. Giebeler, H. Ehrenberg, and D. Wadewitz, Interactions of Copper and Iron in Conversion Reactions of Nanosized Oxides with Large Variations in Iron-Copper Ratio, J. Electrochem. Soc., 2011, 158(12), p A1383-A1392

    Article  Google Scholar 

  15. J. Leitner, P. Voňka, D. Sedmidubský, and P. Svoboda, Application of Neumann-Kopp Rule for the Estimation of Heat Capacity of Mixed Oxides, Thermochim. Acta, 2010, 497(1-2), p 7-13

    Article  Google Scholar 

  16. J. Leitner, P. Chuchvalec, D. Sedmidubský, A. Strejc, and P. Abrman, Estimation of Heat Capacities of Solid Mixed Oxides, Thermochim. Acta, 2002, 395(1-2), p 27-46

    Article  Google Scholar 

  17. H. Kopp, Investigations of the Specific Heat of Solid Bodies, Philos. Trans. R. Soc. Lond., 1865, 155, p 71-202

    Article  Google Scholar 

  18. L. Qiu and M.A. White, The Constituent Additivity Method to Estimate Heat Capacities of Complex Inorganic Solids, J. Chem. Educ., 2001, 78, p 1076-1079

    Article  Google Scholar 

  19. M. Lepple, R. Adam, D. Cupid, P. Franke, T. Bergfeldt, D. Wadewitz, D. Rafaja, and H. Seifert, Thermodynamic Investigations of Copper Oxides Used as Conversion Type Electrodes in Lithium Ion Batteries, J. Mater. Sci., 2013, 48(17), p 5818-5826

    Article  ADS  Google Scholar 

  20. S. Zvyagin, G. Cao, Y. Xin, S. McCall, T. Caldwell, W. Moulton, L.-C. Brunel, A. Angerhofer, and J.E. Crow, Dimer Liquid State in the Quantum Antiferromagnet Compound LiCu2O2, Phys. Rev. B, 2002, 66(6), p 64424

    Article  ADS  Google Scholar 

  21. A. Rusydi, I. Mahns, S. Muller, M. Rubhausen, S. Park, Y.J. Choi, C.L. Zhang, S.-W. Cheong, S. Smadici, P. Abbamonte, M.V. Zimmermann, and G.A. Sawatzky, Multiferroicity in the Spin-1/2 Quantum Matter of LiCu2O2, Appl. Phys. Lett., 2008, 92(26), p 262506-262506-3

  22. K. Clusius and P. Harteck, On the Specific Heat of Some Solids at Low Temperatures: Über die spezifischen Wärmen einiger fester Körper, in German, Z. Phys. Chem., 1928, 134, p 243-263

    Google Scholar 

  23. R.W. Millar, The Heat Capacities at Low Temperatures of “Ferrous Oxide”, Magnetite and Cuprous and Cupric Oxides, J. Am. Chem. Soc., 1929, 51(1), p 215-222

    Article  Google Scholar 

  24. L. Wöhler and N. Jochum, Thermochemical Measurements of the Oxides of Copper, Rhodium, Palladium, and Iridium: Thermochemische Messungen an den Oxyden des Kupfers, Rhodiums, Palladiums und Iridiums, in German, Z. Phys. Chem., 1933, 167, p 169-179

  25. J.-H. Hu and H.L. Johnston, Low Temperature Heat Capacities of Inorganic Solids. XVI. Heat Capacity of Cupric Oxide from 15 to 300 °K.1, J. Am. Chem. Soc., 1953, 75(10), p 2471-2473

    Article  Google Scholar 

  26. J.W. Loram, K.A. Mirza, C.P. Joyce, and A.J. Osborne, Specific-Heat Evidence for Quasi-1D Magnetic Order in CuO, EPL (Europhys. Lett.), 1989, 8(3), p 263

    Article  ADS  Google Scholar 

  27. A. Junod, D. Eckert, G. Triscone, J. Müller, and W. Reichardt, A Study of the Magnetic Transitions in CuO: Specific Heat (1-330 K), Magnetic Susceptibility and Phonon Density of States, J. Phys., 1989, 1(43), p 8021

    Google Scholar 

  28. E. Gmelin, U. Köbler, W. Brill, T. Chattopadhyay, and S. Sastry, Magnetic Specific Heat and Susceptibility of Cupric Oxide (CuO) Single Crystals, Bull. Mater. Sci., 1991, 14(2), p 117-123

    Article  Google Scholar 

  29. E. Gmelin, W. Brill, and T. Chattopadhyay, Specific Heat and Magnetic Ordering in CuO Single Crystals, Thermochim. Acta, 1990, 160(1), p 43-48

    Article  Google Scholar 

  30. E. Gmelin, Cupric Oxide: CuO: Its Structural, Electrical, Thermal and Magnetic Properties, Indian J. Pure Appl. Phys., 1992, 30, p 596-608

    Google Scholar 

  31. J. Leitner, D. Sedmidubský, B. Doušová, A. Strejc, and M. Nevřiva, Heat Capacity of CuO in the Temperature Range of 298.15-1300 K, Thermochim. Acta, 2000, 348(1-2), p 49-51

    Article  Google Scholar 

  32. X.G. Zheng, T. Kawae, S. Tanaka, M. Suzuki, and C.N. Xu, Evidence of Multiple Phase Transitions in Single-Crystalline CuO by DSC Heat Capacity Measurement, J. Therm. Anal. Calorim., 1999, 57, p 853-858

    Article  Google Scholar 

  33. B. Hallstedt, D. Risold, and L.J. Gauckler, Thermodynamic Assessment of the Copper-Oxygen System, J. Phase Equil., 1994, 15(5), p 483-499

    Article  Google Scholar 

  34. A.D. Mah, L.B. Pankratz, W.W. Weller, and E.G. King, Thermodynamic Data for Cuprous and Cupric Oxide, Rep. Investigations 7026, U.S. Bureau of Mines, 1967

  35. A. Boudène, K. Hack, A. Mohammad, D. Neuschütz, and E. Zimmermann, Experimental Investigation and Thermochemical Assessment of the System Cu-O, Z. Metallkd., 1992, 83, p 663-668

    Google Scholar 

  36. J.-H. Hu and H.L. Johnston, Low Temperature Heat Capacities of Inorganic Solids. IX. Heat Capacity and Thermodynamic Properties of Cuprous Oxide from 14 to 300 °K, J. Am. Chem. Soc., 1951, 73(10), p 4550-4551

    Article  Google Scholar 

  37. L.V. Gregor, The Heat Capacity of Cuprous Oxide from 2.8 to 21 °K, J. Phys. Chem., 1962, 66(9), p 1645-1647

    Article  Google Scholar 

  38. P.A. Korzhavyi and B. Johansson, Thermodynamic Properties of Copper Compounds with Oxygen and Hydrogen from First Principles, Sweden, 2010

  39. A.A. Bush, K.E. Kamentsev, and E.A. Tishchenko, Crystal Growth, Thermal Stability, and Electrical Properties of LiCu2O2, Inorg. Mater., 2004, 40(1), p 44-49

    Article  Google Scholar 

  40. S.A. Ivanov, A.A. Bush, K.E. Kamentsev, E.A. Tishchenko, M. Ottosson, R. Mathieu, and P. Nordblad, High-Temperature Structural Phase Transition in Multiferroic LiCu2O2, J. Exp. Theor. Phys., 2013, 117, p 320

    Article  ADS  Google Scholar 

  41. H.L. Johnston and T.W. Bauer, Low Temperature Heat Capacities of Inorganic Solids. VII. Heat Capacity and Thermodynamic Functions of Li2O. Thermodynamics of the Li2O-H2O System, J. Am. Chem. Soc., 1951, 73(3), p 1119-1122

    Article  Google Scholar 

  42. T. Tanifuji, K. Shiozawa, and S. Nasu, Heat Capacity of Lithium Oxide from 306 to 1073 K, J. Nucl. Mater., 1978, 78(2), p 422-424

    Article  ADS  Google Scholar 

  43. M. W. Chase, National Institute of Standards and Technology, NIST-JANAF Thermochemical Tables, American Chemical Society; American Institute of Physics for the National Institute of Standards and Technology, (Washington, D.C.), Woodbury, N.Y, 1998

  44. I. Barin, O. Knacke, and O. Kubaschewski, Thermochemical Properties of Inorganic Substances, Springer, Berlin, 1977

    Book  Google Scholar 

  45. K. Chang and B. Hallstedt, Thermodynamic Assessment of the Li-O System, Calphad, 2011, 35(2), p 160-164

    Article  Google Scholar 

  46. G. Della Gatta, M.J. Richardson, S.M. Sarge, and S. Stølen, Standards, Calibration, and Guidelines in Microcalorimetry. Part 2. Calibration Standards for Differential Scanning Calorimetry* (IUPAC Technical Report), Pure Appl. Chem., 78(7), 2006

  47. H. Wayne Richardson, Ullmann’s Encyclopedia of Industrial Chemistry: Copper Compounds, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2002, p 3

  48. J. Xue and R. Dieckmann, The High-Temperature Phase Diagram of the Cu-O System in the Stability Region of Cuprous Oxide (Cu_(2-d)O), High Temp., 1992, 24, p 271-284

    Google Scholar 

  49. J.H. Lin, K. Li, S.K. Ruan, M.Z. Su, and E. Schweda, Thermostability of LiCu2O2 and LiCu3O3, Chin. Chem. Lett., 1996, 7(2), p 195-198

    Google Scholar 

  50. W. Paszkowicz, M. Marczak, A.M. Vorotynov, K.A. Sablina, and G.A. Petrakovskii, Powder Diffraction Study of LiCu2O2 Crystals, Powder Diffr., 2001, 16(01), p 30-36

    Article  ADS  Google Scholar 

  51. S. Patat, D.P. Blunt, A.M. Chippindale, and P.G. Dickens, The Thermochemistry of LiCuO, Li2CuO2 and LiCu2O2, Solid State Ionics, 1991, 46(3-4), p 325-329

    Article  Google Scholar 

  52. C.G. Maier and K.K. Kelley, An Equation for the Representation of High-Temperature Heat Content Data, J. Am. Chem. Soc., 1932, 54(8), p 3243-3246

    Article  Google Scholar 

  53. J. Blumm and E. Kaisersberger, Accurate Measurement of Transformation Energetics and Specific Heat by DSC in the High-Temperature Region, J. Therm. Anal. Calorim., 2001, 64(1), p 385-391

    Article  Google Scholar 

  54. R. Berger, A. Meetsma, S. van Smaalen, and M. Sundberg, The Structure of LiCu2O2 with Mixed-Valence Copper from Twin-Crystal Data, J. Less Common Met., 1991, 175(1), p 119-129

    Article  Google Scholar 

  55. S. Åsbrink and L.-J. Norrby, A Refinement of the Crystal Structure of Copper(II) Oxide with a Discussion of Some Exceptional e.s.d.’s, Acta Cryst. B, 1970, 26(1), p 8-15

    Article  Google Scholar 

  56. J.B. Forsyth and S. Hull, The Effect of Hydrostatic Pressure on the Ambient Temperature Structure of CuO, J. Phys., 1991, 3(28), p 5257

    Google Scholar 

Download references

Acknowledgments

The authors thank their project partner Robert Adam from TU Bergakademie Freiberg for the sample characterization with XRD and Rietveld analysis. Financial support from the Deutsche Forschungsgemeinschaft (DFG) SPP 1473—WeNDeLIB “Materials with New Design for Improved Lithium Ion Batteries” is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maren Lepple.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lepple, M., Cupid, D.M., Franke, P. et al. Heat Capacities of LiCu2O2 and CuO in the Temperature Range 323-773 K and Cu2O in the Temperature Range 973-1273 K. J. Phase Equilib. Diffus. 35, 650–657 (2014). https://doi.org/10.1007/s11669-014-0335-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-014-0335-5

Keywords

Navigation