Skip to main content
Log in

Thermodynamic Description of the Al–X (X = S, Se, Te) Systems

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

Thermodynamic modeling of the Al–X (X = S, Se, Te) binary systems was performed by means of the CALPHAD method. The solution phases, i.e., (Al), (αS), (βS), (Se), and (Te), were described using a substitutional solution model, and the intermetallic compounds, i.e., αAl2S3, γAl2S3, AlS, Al2Se3, AlTe, αAl2Te3, βAl2Te3, and Al2Te5, as stoichiometric compounds due to the narrow homogeneity ranges. A set of thermodynamic parameters describing the Al–X (X = S, Se, Te) binary systems was obtained. The calculated results for the phase equilibria and thermodynamic properties agree well with literature data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C. Gil, M. Lin, and A.A. Lynden, A Novel Non-aqueous Aluminum Sulfur Battery, J. Power Sources, 2015, 283, p 416-422

    Article  Google Scholar 

  2. Y. Xingwen, J.B. Mathew, S.H. Gyeong, and M. Arumugam, Room-Temperature Aluminum-Sulfur Batteries with a Lithium-Ion-Mediated Ionic Liquid Electrolyte, Chem, 2018, 4(3), p 586-598

    Article  Google Scholar 

  3. G.M. Brown, M.P. Paranthaman, S. Dai, N.J. Dudney, A. Manthiram, T.J. Mclntyre, X.G. Sun, and H. Liu, High Energy Density Aluminum Battery, U. S. Patent (2012)

  4. L.X. Geng, G.C. Lv, X.B. Xing, and J.C. Guo, Reversible Electrochemical Intercalation of Aluminum in Mo6S8, Chem. Mater., 2015, 27(14), p 4926-4929

    Article  Google Scholar 

  5. J. Shen, Z. Qiao, J. Wang, G. Yang, J. Chen, Z. Li, X. Liao, H. Wang, and M.R. Zacharian, Reaction Mechanism of Al-CuO Nanothermites with Addition of Multilayer Grapheme, Thermochim. Acta, 2018, 666, p 60-65

    Article  Google Scholar 

  6. Z.W. Wang and Y.X. Li, Investigation of the MS-Al2S3 Systems (M = Ca, Sr, Ba) and Luminescence Properties of Europium-Doped Thioaluminates, Nonferrous Met., 2002, 54(1), p 19-22, in Chinese

    Google Scholar 

  7. W.Q. Chu, X. Zhang, J. Wang, S. Zhao, S.Q. Liu, and H.J. Yu, A Low-Cost Deep Eutectic Solvent Electrolyte for Rechargeable Aluminum-Sulfur Battery, Energy Storage Mater., 2019, https://doi.org/10.1016/j.ensm.2019.01.025

    Article  Google Scholar 

  8. X. Zhao, L. Yin, and T. Zhang, Heteroatoms Dual-Doped Hierarchical Porous Carbon-Selenium Composite for Durable Li-Se and Na-Se Batteries, Nano Energy, 2018, 49, p 137-146

    Article  Google Scholar 

  9. C. Shi, Y. Du, B. Hu, B. Yang, Y. Pan, F. Guo, S. Liu, and Q. Du, Thermodynamic Descriptions of the Ag-X (X = S, As, Lu) Systems, CALPHAD, 2018, 62, p 207-214

    Article  Google Scholar 

  10. Y. Li, M.Q. Wang, Y.M. Chen, L.Y. Hu, T. Liu, S.J. Bao, and M.W. Xu, Muscle-Like Electrode Design for Li-Te Batteries, Energy Storage Mater., 2018, 10, p 10-15

    Article  Google Scholar 

  11. R. Adam, M. Lepple, N.A. Mayer, D.M. Cupid, Y. Qian, P. Niehoff, and N. Bramnik, Coexistence of Conversion and Intercalation Mechanisms in Lithium Ion Batteries: Consequences for Microstructure and Interaction Between the Active Material and Electrolyte, Int. J. Mater. Res., 2017, 108(11), p 971-983

    Google Scholar 

  12. T. Murakami and N. Shibata, The Action of Sulfur Against Metals at High Temperatures. 3rd Report. The Action of Sulfur Against Aluminum Alloys, Nippon Kinzoku Gakk., 1940, 4, p 221-228, in Japanese

    Google Scholar 

  13. E.J. Kohlmeyer and H.W. Retzlaff, Aluminum Sulfide, Silicon Sulfide and the Al-Si-S System, Z. Anorg. Chem., 1950, 261, p 248-260, in German

    Article  Google Scholar 

  14. T. Forland, J. Gomez, S.K. Ratkje, and T. Ostvold, Measurements of Phase Equilibria in the Aluminum-Aluminum Sulfide System, Acta Chem. Scand., 1974, 28(2), p 226-228

    Article  Google Scholar 

  15. R.C. Sharma and Y.A. Chang, The Al-S (aluminum-sulfur) System, Bull. J. Phase Equilib., 1987, 8(2), p 128-131

    Article  Google Scholar 

  16. J. Flahaut, A Variety of Aluminum Sulfide Stable at High Temperature, C. R., 1951, 232, p 2100-2102, in French

    Google Scholar 

  17. J. Flahaut, Contribution a l’étude du sulfure d’aluminium, Contribution to the Study of Al-S, Ann. Chim., 1952, 12, p 632-696, in French

    Google Scholar 

  18. H.W. King, Crystal Structures of the Elements at 25 °C, Bull. Alloys Phase Diagr., 1981, 2(2), p 401-402

    Article  Google Scholar 

  19. I.D. Reid, S.F.J. Cox, U.A. Jayasooriya, and U. Zimmermann, Muon-Spin Relaxation in Sulfur, Phys. B, 2006, 374, p 408-411

    Article  ADS  Google Scholar 

  20. J. Flahaut, Contribution a l’étude du sulfure d’aluminium, Ann. Chim. Sci. Mater., 1952, 7, p 632-696, in French

    Google Scholar 

  21. M.J. Ferrante, J.M. Stuve, H.C. Ko, and R.R. Brown, Thermodynamic Properties of Aluminum Sulfide (Al2S3), High Temp. Sci., 1981, 14(2), p 91-101

    Google Scholar 

  22. K.C. Mills, Thermodynamic Data for Sulfides, Selenides and Tellurides, Butterworths, NPL, Teddington, 1974

    Google Scholar 

  23. The Open Quantum Materials Database. http://oqmd.org/. Accessed 5 May 2019

  24. The Materials Project. https://materialsproject.org/. Accessed 5 May 2019

  25. M. Chikashige and T. Aoki, Metallographic Examination About the System of Aluminum and Selenium, Mere. Coll. Sci. Kyoto Imp. Univ., 1917, 2, p 249-254

    Google Scholar 

  26. G.A. Steigmann and J. Goodyear, The Crystal Structure of Al2Se3, Acta Crystallogr., 1966, 20, p 617-619

    Article  Google Scholar 

  27. J.M. Howe, The Al-Se (Aluminum-Selenium) System, J. Phase Equilib., 1989, 10(6), p 650-652

    Google Scholar 

  28. G.A. Steigmann and J. Goodyear, The Crystal Structure of Al2Se3, Acta Crystallogr., 1966, 20(5), p 617-619

    Article  Google Scholar 

  29. C.L. Yaws, Chapter 2-Physical Properties-Inorganic Compounds, Yaws Handbook of Physical Properties for Hydrocarbons and Chemicals, Elsevier Science, New York, 2015, p 684-810

    Book  Google Scholar 

  30. P.J. Ficalora, J.W. Hastie, and J.L. Margrave, Mass Spectrometric Studies at High Temperatures. XXVII. The Reactions of Aluminium Vapor with S2(g), Se2(g), and Te2(g), J. Phys. Chem., 1968, 72(5), p 1660-1663

    Article  Google Scholar 

  31. O.M. Uy and J. Drowart, Determination by the Mass Spectrometric Knudsen Cell Method of the Atomization Energies of the Gaseous Aluminum Chalcogenides, Al2, AlCu, AlCuS, and AlCuS2, Trans. Faraday Soc., 1971, 67(5), p 1293-1301

    Article  Google Scholar 

  32. A.F. Kapustinskii and Y.M. Golutvin, Thermochemistry and Structure of Atoms. V. Heat of Formation of Compounds of Aluminium with Elements of Group VI, of the Periodic System, Izv. Akad. Nauk SSSR Otdel. Khim. Nauk, 1951, 9(2), p 192-200, in Russian

    Google Scholar 

  33. A. Schneider and G. Gattow, Beitrag zum System Aluminium-Selen, Z. Anorg. Allg. Chem., 1954, 277(1–2), p 49-59, in German

    Article  Google Scholar 

  34. H. Said, R. Castanet, and H.V. Kehianian, Calorimetric Study of Binary Al-Te System, J. Less Common Met., 1976, 46, p 209-215, in French

    Article  Google Scholar 

  35. H. Said, R. Chastel, C. Bergman, and R. Castanet, Thermodynamic Investigation on Al-Te Alloys by Differential Thermal Analysis and Knudsen-Cell Mass-Spectrometry, Z. Metallkd., 1981, 12(32), p 360-365

    Google Scholar 

  36. R. Kniep and P. Blees, Phasengleichgewichte und intermediäre Phasen im System Al-Te/Phase Relations and Intermediate Phases in the Al-Te System, Z. Naturforsch. B, 1988, 43(2), p 182-188, in German

    Article  Google Scholar 

  37. N. Prabhu and J.M. Howe, The Al-Te (Aluminum-Tellurium) System, Bull. Alloys Phase Diagr., 1990, 11(2), p 202-206

    Article  Google Scholar 

  38. H. Okamoto, Al-Te (Aluminum-Tellurium), J. Phase Equilib., 2000, 21(1), p 106-107

    Article  Google Scholar 

  39. M.S. Mirgalovskaya and E.V. Skudnova, Studies of Alloys in the System AlSb-Al2Te3, J. Inorg. Chem., 1959, 4, p 506-509, in Russian

    Google Scholar 

  40. O. Conrad, A. Schiemann, and B. Krebs, Crystal Structure of β-Al2Te3, Z. Anorg. Allg. Chem., 1997, 623(1–6), p 1006-1010, in German

    Article  Google Scholar 

  41. H.J. Deiseroth, P. Amann, and H. Thurn, Die Pentatelluride M2Te5 (M = Al, Ga, In): Polymorphie, Strukturbeziehungen und Homogenitätsbereiche, Z. Anorg. Allg. Chem., 1996, 622(6), p 985-993, in German

    Article  Google Scholar 

  42. J.H. Yoo, M.S. thesis (Seoul National University, Seoul, 1990)

  43. K.H. Lee and J.J. Lee, Thermodynamic Investigations of Liquid Al-Te, In-Te and Al-Se Alloys, J. Korean Inst. Met. Mater., 1991, 29, p 1262, in Korean

    Google Scholar 

  44. A. Yazawa and Y.K. Lee, Thermodynamic Studies of the Liquid Aluminum Alloy Systems, Trans. JIM, 1970, 11(6), p 411-418

    Article  Google Scholar 

  45. J. Blot, J. Rogez, and R. Castanet, Potentiometric Study of Liquid Alloys Al-Sn and Al-Te, J. Less Common Met., 1986, 118(1), p 67-82

    Article  Google Scholar 

  46. H.A. Joel and A. Schneide, Formation Enthalpy of Aluminum Telluride, Naturwissenschaften, 1967, 54(22), p 578-587, in German

    Article  ADS  Google Scholar 

  47. G. Balducci, A. Giustini, and V. Piacente, On the Vaporization Behavior of Al2Te3, High Temp. Mater. Sci., 1997, 37(2), p 115-124

    Google Scholar 

  48. C.S. Oh and D.N. Lee, Thermodynamic Assessments of the In-Te and Al-Te Systems, CALPHAD, 1993, 17(2), p 175-187

    Article  Google Scholar 

  49. A.T. Dinsdale, SGTE Data for Pure Elements, CALPHAD, 1991, 15(4), p 317-425

    Article  Google Scholar 

  50. O. Redlich and A.T. Kister, Algebraic Representation of Thermodynamic Properties and the Classification of Solutions, Ind. Eng. Chem., 1948, 40(2), p 345-348

    Article  Google Scholar 

  51. U. Gerling, M.J. Pool, and B. Predel, A Contribution to the Associate Model for Binary Liquid Alloys, Z. Metallkd., 1983, 74(9), p 616-619

    Google Scholar 

  52. J. Yang, N.J. Silk, A. Watson, A.W. Bryant, T.G. Chart, and B.B. Argent, The Thermodynamics and Phase Diagrams of the Cd-Hg and Cd-Hg-Te Systems, CALPHAD, 1995, 19, p 415-430

    Article  Google Scholar 

  53. W. Gierlotka, Thermodynamic Description of the Hg-Te Binary System, J. Alloys Compd., 2010, 494, p 102-108

    Article  Google Scholar 

  54. W. Gierlotka, A New Thermodynamic Description of the Binary Bi-Te System Using the Associate Solution and the Wagner-Schottky Models, CALPHAD, 2018, 63, p 6-11

    Article  Google Scholar 

  55. B. Sundman, B. Jansson, and J.O. Andersson, The Thermo-Calc Databank System, CALPHAD, 1985, 9(2), p 153-190

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from the Thermo-physical parameters of Al alloys and their effect on the simulation of the microstructure evolution during solidification and homogenization (no. 51671219) and Anhui Province Postdoctoral Science Foundation (no. 2017B210) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Biao Hu or Yong Du.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, C., Yang, B., Hu, B. et al. Thermodynamic Description of the Al–X (X = S, Se, Te) Systems. J. Phase Equilib. Diffus. 40, 392–402 (2019). https://doi.org/10.1007/s11669-019-00733-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-019-00733-z

Keywords

Navigation