Skip to main content
Log in

The coppice-with-standards silvicultural system as applied to Eucalyptus plantations — a review

  • Review Article
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

We review the management of Eucalyptus species under a coppice-with-standards (CWS) silvicultural system. CWS management results in product diversification, permitting production of small and large scale timber from the same stand. Eucalyptus species are suitable candidates for CWS management because: there are large worldwide plantation areas, sprouting capacity is high, and eucalypts are multipurpose species. We discuss (1) short rotation Eucalyptus coppice management for energy and pulping and (2) Eucalyptus seedling management for solid wood products. We review the literature and discuss experiences with Eucalyptus managed under the CWS system. We also assess projects dealing with Eucalyptus coppice management, stand density regulation, pruning, and stand and wood quality. The growth environment of the standard trees (heavy competition up to the first harvest, free growth afterwards) coupled with long rotations (>20 years) results in high quality logs for solid wood products. Early pruning should be applied to enhance wood quality. We propose a system for the silvicultural management of Eucalyptus under the CWS system, elaborating on the consequences of initial planting density, site productivity, and standard tree densities as well as timing of basic silvicultural applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott I, Loneragan O. 1982. Growth rate of jarrah (Eucalyptus marginata) coppice. Australian Forest Research, 13: 67–73.

    Google Scholar 

  • ABRAF. 2012. Yearbook statistical ABRAF 2012, base year 2011. Brasília: Brazilian Association of Forest Plantation Producers, p.149.

    Google Scholar 

  • Aguiar IB, Valeri SV, Spinelli P, Sartori Filho AS, Pires CAM. 1995. Thinning density effects on height and diameter growth for Eucalyptus citriodora Hook. IPEF, 49: 1–7.

    Google Scholar 

  • Almeida G, Brito JO, Perré P. 2010. Alterations in energy properties of eucalyptus wood and bark subjected to torrefaction: The potential of mass loss as a synthetic indicator. Bioresource Technology, 101: 9778–9784.

    Article  PubMed  CAS  Google Scholar 

  • Andrade EN. 1961. The eucalypt, 2nd edn. Jundiaí: Cia Paulista de Estradas de Ferro, p.667.

  • Azúa MR. 2003. Technology applied by Forestadora Tapebicuá S.A. in forest production. XVIII Jornadas Forestales de Entre Rios.

    Google Scholar 

  • Batish DR, Singh HP, Kohli RK, Kaur S. 2008. Eucalyptus essential oil as a natural pesticide. Forest Ecology and Management, 256: 2166–2174.

    Article  Google Scholar 

  • Bebarata KC. 2006. Teak: Ecology, Silviculture, Management and Profitability. Dehradun: International Book Distributors, p.380.

    Google Scholar 

  • Bellefontaine R, Gaston A, Petrucci Y. 2000. Management of natural forests of dry tropical zones. Rome: FAO conservation guide 32, p.310.

    Google Scholar 

  • Biechele T, Nutto L, Becker G. 2009. Growth strain in Eucalyptus nitens at different stages of development. Silva Fennica, 43: 669–679.

    Article  Google Scholar 

  • Camargo FRA, Silva CR, Stape JL. 1997. Experimental results from the initial growth phase of Eucalyptus coppice sprouts. Série Técnica IPEF, 11: 115–122.

    Google Scholar 

  • Campoe OC, Stape JL, Nouvellon Y, Laclau JP, Bauerle WL, Binkley D, Maire GL. 2013. Stem production, light absorption and light use efficiency between dominant and non-dominant trees of Eucalyptus grandis across a productivity gradient in Brazil. Forest Ecology and Management, 288: 14–20.

    Article  Google Scholar 

  • Connell MJ, Raison RJ, Jenkins P. 2004. Effects of thinning and coppice control on stand productivity and structure in a silvertop ash (Eucalyptus sieberi L. Johnson) forest. Australian Forestry, 67: 30–38.

    Article  Google Scholar 

  • DeBell DS, Keyes CR, Gartner BL. 2001. Wood density of Eucalyptus saligna grown in Hawaiian plantations: effects of silvicultural practices and relation to growth rate. Australian Forestry, 64: 106–110.

    Article  Google Scholar 

  • Decocq G, Aubert M, Dupont F, Alard D, Saguez R, Wattez-Franger A, Foucault B, Delelis-Dusollier A, Bardat J. 2004. Plant diversity in a managed temperate deciduous forest: understorey response to two silvicultural systems. Journal of Applied Ecology, 41: 1065–1079.

    Article  Google Scholar 

  • de Montigny LE. 2004. Silviculture treatments for ecosystem management in the Sayward (STEMS): Establishment report for STEMS 1, Snowden Demonstration Forest. B.C. Min. For., Res. Br., Victoria, B.C. Tech. Rep. 017.

    Google Scholar 

  • Department of Forest Research and Survey. 2009. Managing degraded Sal (Shorea robusta Gaertn. f.) forests in the Terai of Nepal. Kathmandu: Department of Forest Research and Survey.

    Google Scholar 

  • Dickson RL, Raymond CA, Joe W, Wilkinson CA. 2003. Segregation of Eucalyptus dunnii logs using acoustics. Forest Ecology and Management, 179: 243–251.

    Article  Google Scholar 

  • Espinoza ERN, Cárdenas XF, Barra PAN, Bancalari MAE. 2009. Effect of silvicultural management and type of crown on basic density of Eucalyptus nitens. Floresta, 39: 345–354.

    Google Scholar 

  • Eyles A, Mohammed C. 2003. Kino vein formation in Eucalyptus globulus and E. nitens. Australian Forestry, 66: 206–212.

    Article  Google Scholar 

  • Fagg PC. 2006. Thinning of Ash Eucalypt Regrowth. Native Forest Silviculture Guideline No. 13, Land and Natural Resources Division, Department of Sustainability and Environment, Victoria.

    Google Scholar 

  • Ferrari MP, Ferrari CA, Silva HD. 2004. Growing Eucalyptus plantations under the coppice system. Colombo: Embrapa, p.28.

    Google Scholar 

  • Forestry Commission. 2003. National Inventory of Woodland and Trees. Forestry Commission, Great Britain. Available at: http://www.forestry.gov.uk/pdf/nigreatbritain.pdf/$FILE/nigreatbritain.pdf. [Accessed on 10 July 2011].

    Google Scholar 

  • Forrester D, Bauhus J, Connell M. 2003. Competition in thinned Silvertop Ash (Eucalyptus sieberi L. Johnson) stands from early coppice growth. Forest Ecology and Management, 174: 459–475.

    Article  Google Scholar 

  • Forrester DI, Baker TG. 2012. Growth responses to thinning and pruning in Eucalyptus globulus, Eucalyptus nitens, and Eucalyptus grandis plantations in southeastern Australia. Canadian Journal of Forest Research, 42: 75–87.

    Article  Google Scholar 

  • Forrester DI, Bertram CA, Murphy S. 2012. Impact of competition from coppicing stumps on the growth of retained trees differs in thinned Eucalyptus globulus and Eucalyptus tricarpa plantations in southeastern Australia. Canadian Journal of Forest Research, 42: 841–848.

    Article  Google Scholar 

  • Forrester DI, Medhurst JL, Wood M, Beadle CL, Valencia JC. 2010. Growth and physiological responses to silviculture for producing solid-wood products from Eucalyptus plantations: An Australian perspective. Forest Ecology and Management, 259: 1819–1835.

    Article  Google Scholar 

  • Fuller RJ, Warren MS. 1993. Coppiced woodlands: their management for wildlife. 2nd edn. Peterborough: JNCC, p.29.

    Google Scholar 

  • Geldres E, Schlatter JE, Marcoleta A. 2004. Coppice options for three Eucalyptus species, a case in the Osorno Province, X Region. Bosque, 25: 57–62.

    Google Scholar 

  • Gonçalves JLM, Stape JL, Laclau JP, Bouillet JP, Ranger J. 2008. Assessing the effects of early silvicultural management on long-term site productivity of fast-growing eucalypt plantations: the Brazilian experience. Southern Forests, 70: 105–118.

    Article  Google Scholar 

  • Goulart M, Haselein CR, Hoppe JM, Farias JA, Pauleski DT. 2003. Basic density and dry mass of wood of Eucalyptus grandis as affected by tree spacing and trunk position. Ciência Florestal, 13: 167–175.

    Google Scholar 

  • Guedes ICL, Coelho Júnior LM, Oliveira AD, Mello JM, Rezende JLP, Silva CPC. 2011. Economic analysis of replacement regeneration and coppice regeneration in eucalyptus stands under risk conditions. Cerne, 17: 393–401.

    Google Scholar 

  • Higa RCV, Sturion JA. 1991. Sprouting evaluation of thirteen Eucalyptus species in Uberaba — MG. Boletim de Pesquisa Florestal, 23: 79–86.

    Google Scholar 

  • IBGE. 2011. Production from plant extraction and silviculture. Instituto Brasileiro de Geografia e Estatística. Available at: http://www.ibge.gov.br/home/estatistica/economia/pevs/2010/pevs2010.pdf. [Accessed 26 September 2012]

    Google Scholar 

  • Iglesias-Trabado G, Wilstermann D. 2008. Eucalyptus universalis. Global cultivated eucalypt forests map 2008. Version 1.0.1. In GIT Forestry Consulting’s EUCALYPTOLOGICS: information resources on Eucalyptus cultivation worldwide. http://www.git-forestry.com/. Accessed 29 March 2009.

    Google Scholar 

  • Inoue MT, Stöhr GWD. 1991. Technical and economical feasibility of the use of coppice with standards method in Eucalyptus grandis plantations. In: R.A. Seitz, C.B. Reissmann, J.G.A. Carneiro, J.R. Malinovski and R.V. Soares (eds), The challenge of neotropical forests. Curitiba: UFPR, pp. 330–343.

    Google Scholar 

  • Kearney D, James R, Montagu K, Smith RGB. 2007. The effect of initial planting density on branching characteristics of Eucalyptus pilularis and E. grandis. Australian Forestry, 70: 262–268.

    Article  Google Scholar 

  • Kojima M, Yamaji FM, Yamamoto H, Yoshida M, Saegusa K. 2009. Determining factor of xylem maturation in Eucalyptus grandis planted in different latitudes and climatic divisions of South America: a view based on fiber length. Canadian Journal of Forest Research, 39: 1971–1978.

    Article  Google Scholar 

  • Larson PR. 1963. Stem form development of forest trees. Forest Science, Monograph 5.

    Google Scholar 

  • Larson PR, Kretschmann DE, Clark A, Isebrands JG. 2001. Formation and properties of juvenile wood in southern pines: a synopsis. Gen. Tech. Rep. FPL-GTR-129. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory.

    Google Scholar 

  • Lassauce A, Anselle P, Lieutier F, Bouget C. 2012. Coppice-with-standards with an overmature coppice component enhance saproxylic beetle biodiversity: A case study in French deciduous forests. Forest Ecology and Management, 266: 273–285.

    Article  Google Scholar 

  • Lindenmayer DB, Hobbs RJ. 2004. Fauna conservation in Australian plantation forests — a review. Biological Conservation, 119: 151–168.

    Article  Google Scholar 

  • Little KM, Gardner RAW. 2003. Coppicing ability of 20 Eucalyptus species grown at two high-altitude sites in South Africa. Canadian Journal of Forest Research, 33: 181–189.

    Article  Google Scholar 

  • Machado CC, Ignácio AS, Vale AB, Souza Júnior HSS. 1990. Effects of timber removal with a cable skidder on Eucalyptus alba sprouts. Revista Árvore, 14: 55–60.

    Google Scholar 

  • Machar I. 2009. Coppice-with-standards in floodplain forests — a new subject for nature protection. Journal of Forest Science, 55: 306–311.

    Google Scholar 

  • Maestri R. 2003. Forest management criteria for solid wood production: the Aracruz case. XVIII Jornadas Forestales de Entre Rios.

    Google Scholar 

  • Malan FS, Hoon M. 1992. Effect of initial spacing and thinning on some wood properties of Eucalyptus grandis. South African Forestry Journal, 163: 13–20.

    Article  Google Scholar 

  • Matthews JD. 1991. Silvicultural systems. Oxford: Clarendon Press, 296 pp.

    Google Scholar 

  • Montagu K, Kearney D, Smith RGB. 2003. The biology and silviculture of pruning planted eucalypts for clear wood production — a review. Forest Ecology and Management, 179: 1–13.

    Article  Google Scholar 

  • Neilsen WA, Gerrand AM. 1999. Growth and branching habit of Eucalyptus nitens at different spacing and the effect on final crop selection. Forest Ecology and Management, 123: 217–229.

    Article  Google Scholar 

  • Néri AC, Gonçalves R, Hernandez RE. 2000. Orthogonal 90–90 cutting forces for three wood species of Eucalyptus. Revista Brasileira de Engenharia Agrícola e Ambiental, 4: 275–280.

    Article  Google Scholar 

  • Nobre SR, Rodriguez LCE. 2001. A method for the creation and economic evaluation of coppice regimes. Scientia Forestalis, 60: 29–44.

    Google Scholar 

  • Nutto L, Touza Vázquez MC. 2004. High quality sawnwood production with Eucalyptus globulus. CIS-Madera, 12: 6–18.

    Google Scholar 

  • Nutto L, Spathelf P, Seling I. 2006. Management of individual tree diameter growth and implications for pruning for Brazilian Eucalyptus grandis Hill ex Maiden. Floresta, 36: 397–413.

    Google Scholar 

  • Pinkard EA, Beadle CL. 1998. Effects of green pruning on growth and stem shape of Eucalyptus nitens (Deane and Maiden) Maiden. New Forests, 15: 107–126.

    Article  Google Scholar 

  • Pinkard EA, Neilsen WA. 2003. Crown and stand characteristics of Eucalyptus nitens in response to initial spacing: implications for thinning. Forest Ecology and Management, 172: 215–227.

    Article  Google Scholar 

  • Pires VAV, Silva ML, Silva CM, Rezende AAP, Cordeiro SA, Jacovine LAG, Soares NS. 2008. Economic viability for implantation of an integrated unit of management of solid residuals in the furniture industry of Ubá, MG. Cerne, 14: 295–303.

    Google Scholar 

  • Poynton RJ. 1983. The silvicultural treatment of eucalypt plantations in Southern Africa. Silvicultura, 31: 603–605.

    Google Scholar 

  • Reis GG, Reis MGF. 1997. Eucalyptus sprouting physiology with emphasis in water relations. Série Técnica IPEF, 11: 9–22.

    Google Scholar 

  • Reynders M. 1984. A coppice with standards system adapted to Eucalyptus plantations for rural communities. Silva Gandavensis, 50: 19–37.

    Google Scholar 

  • Rezende JLP, Souza AN, Oliveira AD. 2005. The optimal time for substitution of Eucalyptus spp. plantations — the technological progress case. Cerne, 11: 1–15.

    Google Scholar 

  • Rocha PLB, Viana BF, Cardoso MZ, Melo AMC, Costa MGC, Vasconcelos RN, Dantas TB. 2013. What is the value of eucalyptus monocultures for the biodiversity of the Atlantic forest? A multitaxa study in southern Bahia, Brazil. Journal of Forestry Research, 24: 263–272.

    Article  Google Scholar 

  • Rowan CA, Mitchell SJ, Temesgen H. 2003. Effectiveness of clearcut edge windfirming treatments in coastal British Columbia: short-term results. Forestry, 76: 55–65.

    Article  Google Scholar 

  • Ryan MG, Binkley D, Fownes JH, Giardina CP, Senock RS. 2003. An experimental test of the causes of forest growth decline with stand age. Ecological Monographs, 74: 393–414.

    Article  Google Scholar 

  • Silveira RLVA, Takahashi EN, Sgarbi F, Camargo MAF, Moreira A. 2000. Development and nutrition of Eucalyptus citriodora tree sprouting under boron rates in nutrient solution. Scientia Forestalis, 57: 53–67.

    Google Scholar 

  • Sims REH, Senelwa K, Maiava T, Bullock BT. 1999. Eucalyptus species for biomass energy in New Zealand — Part II: Coppice performance. Biomass and Bioenergy, 17: 333–343.

    Article  CAS  Google Scholar 

  • Smith RGB, Brennan P. 2006. First thinning in sub-tropical eucalypt plantations grown for high-value solid-wood products: a review. Australian Forestry, 69: 305–312.

    Article  Google Scholar 

  • Smith RGB, Dingle J, Kearney D, Montagu K. 2006. Branch occlusion after pruning in four contrasting sub-tropical eucalypt species. Journal of Tropical Forest Science, 18: 117–123.

    Google Scholar 

  • Soares TS, Carvalho RMMA, Vale AB. 2003. Economic evaluation of Eucalyptus grandis stands for multiproduct use. Revista Árvore, 27: 689–694.

    Google Scholar 

  • Souza AN, Rezende JLP, Oliveira AD. 2001. Optimal time for substitution of Eucalyptus spp populations — the case of constant technology. Cerne, 7: 93–103.

    Google Scholar 

  • Souza FC, Reis GG, Reis MGF, Leite HG, Alves FF, Faria RS, Pereira MM. 2012. Survival, sprout number and diameter growth of coppice and intact plants of eucalypt clones. Floresta e Ambiente, 19: 44–54.

    Article  Google Scholar 

  • Spina-França F. 1989. The effect of the number of remaining trees on the wood production of Eucalyptus saligna Smith. in second rotation. Thesis, Universidade de São Paulo.

    Google Scholar 

  • Stape JL, Madachi JC, Bacacicci DD, Oliveira MS. 1993. Eucalyptus spp sprout management: technical and operational results. Circular Técnica IPEF, 183: 1–13.

    Google Scholar 

  • Stape JL. 1997. Global planning and standardization of operational procedures of simple coppice in Eucalyptus. Série Técnica IPEF, 11: 51–62.

    Google Scholar 

  • Stape JL, Binkley D, Ryan MG, Fonseca S, Loos RA, Takahashi EN, Silva CR, Silva SR, Hakamada RE, Ferreira JMA, Lima AMN, Gava JL, Leite FP, Andrade HB, Alves JM, Silva GGC, Azevedo MR. 2010. The Brazil Eucalyptus Potential Productivity Project: Influence of water, nutrients and stand uniformity on wood production. Forest Ecology and Management, 259: 1684–1694.

    Article  Google Scholar 

  • Stewart PJ. 1980. Coppice with standards: a system for the future. Commonwealth Forestry Review, 59: 149–154.

    Google Scholar 

  • Teixeira TOB, Silva ML, Jacovine LAG, Valverde SR, Silva JC, Pires VAV. 2009. The perception of manufacturers of the furniture center of Ubá-MG about the use of Eucalyptus wood. Revista Árvore, 33: 969–975.

    Article  Google Scholar 

  • Trevisan R, Haselein CR, Santini EJ, Schneider PR, Menezes LF. 2007. Effect of the thinning intensity in the dendrometric and technological characteristics of the wood of Eucalyptus grandis. Ciência Florestal, 17: 377–387.

    Google Scholar 

  • Troup RS. 1928. Silvicultural Systems. Oxford: Clarendon Press, p.199.

    Google Scholar 

  • Touza Vázquez MC. 2001. Investigation project about adequate sawing systems to process Eucalyptus globulus with growth strains. CIS-Madera, 6: 8–37.

    Google Scholar 

  • Valencia J, Harwood C, Washusen R, Morrow A, Wood M, Volker P. 2011. Longitudinal growth strain as a log and wood quality predictor for plantation-grown Eucalyptus nitens sawlogs. Wood Science and Technology, 45: 15–34.

    Article  CAS  Google Scholar 

  • Wardlaw TJ, Neilsen WA. 1999. Decay and other defects associated with pruned branches of Eucalyptus nitens. Tasforests, 11: 49–57.

    Google Scholar 

  • Warren E, Smith RGB, Apiolaza LA, Walker JCF. 2009. Effect of stocking on juvenile wood stiffness for three Eucalyptus species. New Forests, 37: 241–250.

    Article  Google Scholar 

  • Webb DB, Wood PJ, Smith JP, Henman GS. 1984. A guide to species selection for tropical and sub-tropical plantations, 2nd edn. Oxford: Commonwealth Forestry Institute, p.256.

  • Whittock SP, Greaves BL, Apiolaza LA. 2004. A cash flow model to compare coppice and genetically improved seedling options for Eucalyptus globulus pulpwood plantations. Forest Ecology and Management, 191: 267–274.

    Article  Google Scholar 

  • Wohlgemuth T, Burgi M, Scheidegger C, Schutz M. 2002. Dominance reduction of species through disturbance — a proposed management principle for central European forests. Forest Ecology and Management, 166: 1–15.

    Article  Google Scholar 

  • Wood MJ, Scott R, Volker PW, Mannes DJ. 2008. Windthrow in Tasmania, Australia: monitoring, prediction and management. Forestry, 81: 415–427.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Carlos Ferraz Filho.

Additional information

Project funding: This work was suported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), through the PSDE program, process number BEX: 2939/12-6.

Corresponding editor: Chai Ruihai

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferraz Filho, A.C., Scolforo, J.R.S. & Mola-Yudego, B. The coppice-with-standards silvicultural system as applied to Eucalyptus plantations — a review. Journal of Forestry Research 25, 237–248 (2014). https://doi.org/10.1007/s11676-014-0455-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-014-0455-0

Keywords

Navigation