Skip to main content
Log in

Changes induced by osmotic stress in the morphology, biochemistry, physiology, anatomy and stomatal parameters of almond species (Prunus L. spp.) grown in vitro

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

We investigated the influence of different levels of osmotic stress on growth and development in selected wild almond species (eight Prunus spp.) grown in vitro. The study, while endorsing the efficacy of in vitro screening of auxiliary buds of wild almond for osmotic stress tolerance, showed species variability in its response to osmotic stress. Osmotic stress reduced growth and development of all the species. However, the putative tolerant Prunus spp. showed better performance than the putative susceptible genotypes. On average there was an 80% decrease in shoot dry weight at −1.2 MPa. Reduction in shoot weight was more common in osmotic stress-susceptible species in the section labeled ‘Euamygdalus’. The tolerant Prunus species produced smaller changes in biochemical responses than the sensitive cultivars for malondialdehyde content, catalase activity, relative permeability of protoplast membranes, and net photosynthetic rate. The tolerant species maintained cell integrity better than drought sensitive species. Wild almond species in the section labeled ‘Spartioides’ (Prunus arabica (Olivier) Neikle, Prunus glauca (Browicz) A.E. Murray, Prunus scoparia Spach) and ‘Lycioides’ (Prunus lycioides Spach, Prunus reuteri Bossi. et Bushe) were best adapted to osmotic stress. Increase in chlorophyll concentration and leaf thickness under high osmotic stress can be considered as preliminary selection parameters for osmotic stress tolerance in Prunus spp. The study confirmed the efficacy of the in vitro method for screening of large number of genotypes for osmotic stress tolerance in wild almond species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad I, Wainwright SJ, Stewart GR. 1981. The solute and water relations of Agrostis stolonifera ecotypes differing in their salt tolerance. New Phytology, 87: 615–629.

    Article  CAS  Google Scholar 

  • Adam HP, Cairns, JE, Horton, P, Jones, HG, Griffiths, H. 2002. Linking drought-resistance mechanisms to drought avoidance in upland rice using a QTL approach: progress and new opportunities to integrate stomatal and mesophyll responses. Journal of Experimental and Botany, 53: 989–1004.

    Article  Google Scholar 

  • Agastian STP, Vivekananda M. 1997. Effect of induced salt stress on growth and uptake of mineral nutrients in mulberry (Morus alba) genotypes. Indian Journal of Agricultural Science, 67: 469–472.

    Google Scholar 

  • Arad S, Richmond AE. 1976. Leaf cell water and enzyme activity. Plant Physiology, 57: 656–658.

    Article  CAS  PubMed  Google Scholar 

  • Arnon DI. 1949. Copper enzyme in isolated chloroplast polyphenol oxidase in Beeta vulgaris. Plant Physiology, 24: 1–15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ashraf M, Leary JWO. 1996. Effect of drought stress on growth, water relations, and gas exchange of two lines of sunflower differing in degree of salt tolerance. International Journal of Plant Science, 157: 729–732.

    Article  Google Scholar 

  • Barbara L, Scartazza A, Brugnoli E, Navari-Izzo F. 1999. Antioxidative defense system, pigment composition, and photosynthetic efficiency in two wheat cultivars subjected to drought. Plant Physiology, 119: 1091–1100.

    Article  Google Scholar 

  • Bates LS, Waldren RP, Teare LD. 1973. Rapid determination of free praline for water stress studies. Plant Soil, 39: 205–207.

    Article  CAS  Google Scholar 

  • Belkhodja R, Morales F, Abadia A, Medrano H, Abadia J. 1999. Effect of salinity on chlorophyll fluorescence and photosynthesis of barley (Hordeum vulgare L) grown under a triple-line source sprinkler system in the field. Photosynthetica, 36:375–387.

    Article  CAS  Google Scholar 

  • Bhagwat SG, Bhatia CR. 1993. Selection for flag leaf stomatal frequency in bread-wheat. Plant Breeding, 110: 129–136.

    Article  Google Scholar 

  • Bray H, Thrope WV. 1954. Analysis of phenolic components of interest in metabolism. Methods Biochemical Analysis, 1: 27–52.

    Article  CAS  Google Scholar 

  • Burlyn EM, Merrill RK. 1973. The osmotic potential of polyethylene glycol 6000. Plant Physiology, 51: 914–916.

    Article  Google Scholar 

  • Camposeo S, Palasciano M, Vivaldi GA, Godini A. 2010. Effect of increasing climatic water deficit on some leaf and stomatal parameters of wild and cultivated almonds under Mediterranean conditions. Scientia Horticulture, doi:101016/jscienta201009022.

    Google Scholar 

  • Chaves MM, Pereira JS, Maroco J, Rodrigues ML, Ricardo CPP, Osorio ML, Carvalho I, Faria T, Pinheiro C. 2002. How plants cope with water stress in the field? Photosynthesis and growth. Annual Botany, 89: 907–916.

    Article  CAS  Google Scholar 

  • Chazen O, Hartung W, Neumann PM. 1995. The different effects of PEG 6000 and NaCl on leaf development are associated with differential inhibition of root water transport. Plant Cell Environmental, 18: 727–735.

    Article  CAS  Google Scholar 

  • Child RD, Summers JE, Babij J, Farrent JW, Bruce DM. 2003. Increased resistance to pod chatter is associated with changes in the vascular structure in pods of a resynthesized Brassica napus line. Journal of Experimental Botany, 54: 1919–1930.

    Article  CAS  PubMed  Google Scholar 

  • Ehleringer J. 1980. Leaf morphology and reflectance in relation to water and temperature stress. In: Turner N C and Kramer PJ (eds), Adaptation of plants to water and high temperature stress. New York: Willey, pp. 293–309.

    Google Scholar 

  • Elagoz V, Han SS, Manning WJ. 2006. Acquired changes in stomatal characteristics in response to ozone during plant growth and leaf development of bush beans (Phaseolus vulgaris L) indicate phenotypic plasticity. Environmental Pollution, 140: 395–405.

    Article  PubMed  Google Scholar 

  • Escalona JM, Flexas J, Medrano H. 1999. Stomatal and non-stomatal limitations of photosynthesis under water stress in field-grown grapevines. Australian Journal of Plant Physiology, 26: 421–433.

    Article  Google Scholar 

  • Fanizza G, Reina A. 1990. Response of Amygdalus communis and Amygdalus webbii seedlings to water stresses. In: XXIII International Horticultural Congress, p.474.

    Google Scholar 

  • Ferdinand JA, Fredericksen TS, Kouterick KB, Skelly JM. 2000. Leaf morphology and ozone sensitivity of two open pollinated genotypes of black cherry (Prunus serotina) seedlings. Environmental Pollution, 108: 297–302.

    Article  CAS  PubMed  Google Scholar 

  • Garg AK, Kim JK, Owens TG, Ranwala AP, Do Choi Y, Kochian LV, Wu RJ. 2002. Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proceeding National Academic Science USA, 99: 15898–15903.

    Article  CAS  Google Scholar 

  • Garg BK, Kathju S, Vyas SP, Lahri AN. 1997. Sensitivity of cluster bean to salt stress at various growth stage. Indian Journal Plant Physiology, 2: 49–53.

    Google Scholar 

  • Giorio P, Sorrentino G, d’ Andria R. 1999. Stomatal behaviour, leaf water status and photosynthetic response in field-grown olive trees under water deficit. Environmental and Experimental Botany, 42: 95–104.

    Article  Google Scholar 

  • Gradziel TM, Kester DE. 1998. Breeding for self fertility in California almond cultivars. Acta Horticulture, 470: 109–117.

    Google Scholar 

  • Guerfel M, Baccouri O, Boujnah D, Chaibi W, Zarrouk M. 2009. Impacts of water stress on gas exchange, water relations, chlorophyll content and leaf structure in the two main Tunisian olive (Olea europaea L) cultivars. Science Horticulture, 119: 257–263.

    Article  CAS  Google Scholar 

  • Guirguis NS, Soubhy I, Khalil MA, Stino GR. 1995. Leaf stomata and stem lenticels as a means of identification of some fruits stocks. Acta Horticulture, 409: 229–239.

    Google Scholar 

  • Hageman RH, Hucklesby DP. 1972. Nitrate reductase from higher plants. Methods Enzymology, 23: 491–503.

    Article  Google Scholar 

  • Hare PD, Cress WA. 1997. Metabolic implications of stress-induced praline accumulation in plants. Plant Growth Regulation, 21: 79–102.

    Article  CAS  Google Scholar 

  • Hare PD, Cress WA, Staden, JV. 1998. Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environmental, 21: 535–553.

    Article  CAS  Google Scholar 

  • He SP, Yan QJ, Song GY, Xu ML. 1995. Progress in morphological and physiological and biochemical indexes of drought resistance identification of maize. Agricultural Research in the Arid Areas, 13: 67–73.

    Google Scholar 

  • Jiang YW, Huang BR. 2001. Drought and heat stress injury to two coolseason turf grasses in relation to antioxidant metabolism and lipid peroxidation. Crop Science, 41: 436–442.

    Article  CAS  Google Scholar 

  • Karschon R. 1974. The relation of seed origin to growth of Eucalyptus camaldulensis Dehn In Israel. Israel Journal Agricultural Research, 23: 159–173.

    Google Scholar 

  • Lawlor DW. 2002. Limitation to photosynthesis in water stressed leaves: stomata vs metabolism and the role of ATP. Annual Botany, 89: 1–15.

    Article  Google Scholar 

  • Levitt, J. 1980. Responses of Plants to Environmental Stresses: Water, Radiation, Salt and Other Stresses, Academic Press, New York, 2nd Ed., Vol. 2. pp. 365–488.

    Google Scholar 

  • Li Y. 1993. Assessment method and indexes for drought resistance of crops. Agricultural Research in the Arid Areas, 11: 91–100.

    Google Scholar 

  • Lima ALS, DaMatta FM, Pinheiro HA, Totola MR, Loureiro ME. 2002. Photochemical responses and oxidative stress in two clones of Coffea canephora under water deficit conditions. Environmental and Experimental Botany, 47: 239–347.

    Article  CAS  Google Scholar 

  • Liu AR, Zhao KF. 2005. Osmotica accumulation and its role in osmotic adjustment in Thellungiella halophila under salt stress. Journal Plant Physiology and Molecular Biology China, 31: 389–395.

    CAS  Google Scholar 

  • Liu ZQ, Zhang SC. 1994. Physiology of Drought Resistance in Plants. Beijing: Agricultural Press of China, p.398.

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall R. 1951. Protein measurements with folin-phenol reagent. Journal of Biology and Chemistry, 193: 265–275.

    CAS  Google Scholar 

  • Mahhou A, DeJong TM, Cao T, Shackel KS. 2005. Water stress and crop load effects on vegetative and fruit growth of ‘Elegant Lady’ peach [Prunus persica (L) Batch] trees Fruits, 60: 55–68.

    Article  Google Scholar 

  • Makbul S, Saruhan Güler N, Durmuş N, Güven S. 2011. Changes in anatomical and physiological parameters of soybean under drought stress. Turkish Journal Botany, 35:1–9.

    Google Scholar 

  • Makbul S, Türkmen Z, Coşkunçelebi K, Beyazoğlu O. 2008. Anatomical and pollen characters in the genus Epilobium L (Onagraceae) from northeast. Anatolia Acta Biologia Cracov Botany, 50: 57–67.

    Google Scholar 

  • Matsuda K, Rayan A. 1990. Anatomy: A key factor regulating plant tissue response to water stress. In: Kafternan F (ed), Environment Injury to Plants. San Diego: Academic Press, p 290.

    Google Scholar 

  • Morris DL. 1948. Quantitative determination of carbohydrates with Dreywood anthrone reagent. Science, 107: 254–255.

    Article  CAS  PubMed  Google Scholar 

  • Olmos E, Sanchez-Blanco MJ, Fernandez T, Alarcon JJ. 2007. Subcellular effects of drought stress in Rosmarinus officinalis. Plant Biology, 9: 77–84.

    Article  CAS  PubMed  Google Scholar 

  • Petrusa LM, Winicov I. 1997. Proline status in salt-tolerant and salt sensitive alfalfa cell lines and plants in response to NaCl. Plant Physiology and Biochemistry, 35: 303–310.

    CAS  Google Scholar 

  • Pitman WD, Holte C, Conrad BE, Bashaw EC. 1983. Histological differences in moisture stressed and non-stressed Klein grass forage. Crop Science, 23: 793–795.

    Article  Google Scholar 

  • Ramanjulu S, Veeranjulu K, Sudhakar C. 1993. Sodium, potassium and nitrogen status of some mulberry (Morus alba L) cultivars under NaCl salinity. Indian Journal Plant Physiology and Biochemistry, 19: 103–106.

    Google Scholar 

  • Ranjbarfardooei A, Samson R, Van Damme P, Lemeur R. 2000. Effects of drought stress induced by polyethylene glycol on pigment content and photosynthetic gas exchange of Pistacia khinjuk and P mutica. Photosynthetica, 38: 443–447.

    Article  Google Scholar 

  • Ranjbarfardooei A, Samson R, Lemeur R, Van Damme P. 2002. Effects of osmotic drought stress induced by a combination of NaCl and polyethylene glycol on leaf water status, photosynthetic gas exchange, and water use efficiency of Pistachia khinjuk and P mutica. Photosynthetica, 40: 165–169.

    Article  Google Scholar 

  • Romero P, Botia P. 2006. Daily and seasonal patterns of leaf water relations and gas exchange of regulated deficit-irrigated almond trees under semiarid conditions. Environmental and Experimental Botany, 56: 158–173.

    Article  Google Scholar 

  • Rouhi V, Samson R, Van Damme P, Lemeur R. 2006. Stem photosynthesis in three different almond species during drought and subsequent recovery. 27th International Horticulture Congress, August 13–19, Seoul, South Korea.

    Google Scholar 

  • Rouhi V, Samson R, Lemeur R, van Damme P. 2007. Photosynthetic gas exchange characteristics in three different almond species during drought stress and subsequent recovery. Environmental and Experimental Botany, 59: 117–129.

    Article  CAS  Google Scholar 

  • Sanchez FJ, Manzanares M, de Andres EF, Tenorio JL, Ayerbe L. 1998. Turgor maintenance, osmotic adjustment and soluble sugar and praline accumulation in 49 pea cultivars in response to water stress. Field Crops Research, 59: 225–235.

    Article  Google Scholar 

  • SAS Institute Inc. 2000. SAS/STAT user’s guide version 6 vol 2 4th edn SAS Institute Cary NC, USA.

    Google Scholar 

  • Sharma SB, Ashokkumar P, McDonald D. 1991. A greenhouse technique to screen pigeon pea for resistance to Heterode racajani. Annual and Applied Biology, 118: 351–356.

    Article  Google Scholar 

  • Save R, Bill C, Domingo R, Ruiz-Sanchez MC, Torrecillas A. 1995. Some physiological and morphological characteristics of citrus plants for drought resistance. Plant Science, 110: 167–172.

    Article  CAS  Google Scholar 

  • Sean CC, Stefan KA, Janet EC, Sangeeta J, Narendra S, Marianne P, Hamlyn GJ. 1998. The role of solute accumulation, osmotic adjustment and changes in cell wall elasticity in drought tolerance in Ziziphus mauritiana (Lamk). Journal of Experimental Botany, 49: 967–977.

    Article  Google Scholar 

  • Shalhevet J, Yaron D, Horowitz U. 1974. Salinity and citrus yield: an analysis of results from a salinity survey. Journal of Horticultural Science, 49: 15–27.

    Google Scholar 

  • Shao HB, Chu LY, Jaleel CA, Zhao CX. 2008. Water deficit stress induced anatomical changes in higher plants. CR Biology, 331: 215–225.

    Article  Google Scholar 

  • Sorkheh K, Shiran B, Gradziel TM, Epperson NK, Martínez-Gómez P, Asadi E. 2007. Amplified fragment length polymorphism as a tool for molecular characterization of almond germplasm: genetic diversity among cultivated genotypes and related wild species of almond, and relationships with agronomic traits. Euphytica, 156: 327–344.

    Article  CAS  Google Scholar 

  • Sorkheh K, Shiran B, Rouhi V, Asadi E, Jahanbazi H, Moradi H, Gradziel TM, Martínez-Gómez P. 2009. Phenotypic diversity within native Iranian almond (Prunus spp) species and their breeding potential. Genetic Resources and Crop Evolution, 56: 947–961.

    Article  Google Scholar 

  • Sorkheh K, Shiran B, Khodambashi M, Rouhi V, Ercisli S. 2010. In vitro assay of native Iranian almond species (Prunus L spp) for drought tolerance. Plant Cell Tissue and Organ Culture, 105: 395–404.

    Article  Google Scholar 

  • Sorkheh K, Shiran B, Rouhi V, Khodambashi M, Sofo A. 2011. Regulation of the ascorbate-glutathione cycle in wild almond during drought stress. Russian Journal Plant Physiology, 58: 76–84.

    Article  CAS  Google Scholar 

  • Sorkheh K, Shiran B, Khodambashi M, Rouhi V, Mosavei S, Sofo A. 2012. Exogenous proline alleviates the effects of H2O2 induced oxidative stress in wild almond species. Russian Journal Plant Physiology, 59: 788–798.

    Article  CAS  Google Scholar 

  • Srinivas V, Balasubramanian D. 1995. Proline is a protein-compatible hydrotrope. Langmuir, 11: 2830–2833.

    Article  CAS  Google Scholar 

  • Taji T, Ohsumi C, Iuchi S, Seki M, Kasuga M, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K. 2002. Important roles of drought- and coldinducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant Journal, 29: 417–426.

    Article  CAS  PubMed  Google Scholar 

  • Tal M. 1997. Physiology of polyploidy plants DNA, RNA, protein and abscisic acid in autotetraploid and diploid tomato under low and high salinity. Botany Gaz, 138: 119–122.

    Article  Google Scholar 

  • Torrecillas A, Alarcón JJ, Domingo R, Planes J, Sánchez-Blanco MJ. 1996. Strategies for drought resistance in leaves of two almond cultivars. Plant Science, 118: 135–143.

    Article  CAS  Google Scholar 

  • Torrecillas A, Galego R, Perez-Astor A, Ruiz-Sanchez MC. 1999. Gas exchange and water relations of young apricot plants under drought conditions. Journal of Agricultural Science, 132: 445–452.

    Article  Google Scholar 

  • Uprety DC, Sarin B. 1976. Physiological studies on salt tolerance in Pisum sativum L Tonic composition and nitrogen metabolism. Acta Agronomy Academic Science, 25: 455–460.

    CAS  Google Scholar 

  • Van Damme P. 1991. Adaptation to drought stress in plants II: Morphological adaptations. Med Fac Landbouww Rijks uninv Gent, 52: 1–8.

    Google Scholar 

  • Vijayan K, Raghunath MK, Das KK, Tikader A, Chakraborti SP, Roy BN. 1997. Studies on leaf moisture of mulberry germplasm varieties. Indian Journal Seric, 36: 155–157.

    Google Scholar 

  • Vijayan K, Chakraborti SP, Ercisli S, Ghosh PD. 2008. NaCl induced morpho-biochemical and anatomical changes in mulberey (Morus spp) Plant Growth Regulation, 56: 61–69.

    Article  CAS  Google Scholar 

  • Weinberg R, Lerner HR, Pojkoff-Mayber A. 1982. A relationship between potassium and proline accumulation in salt-stressed Sorghum bicolor. Physiologia Plantarum, 55:5–11.

    Article  Google Scholar 

  • Weyers J, Meidner H. 1990. Methods in Stomatal Research, Longman Scientific and Technical, London.

    Google Scholar 

  • Wignarajah K, Jennings DH, Handley JF. 1975. The effect salinity on growth of Phaseolus vulgaris L Anatomical Changes in the first trifoliate leaf. Annual Botany, 39: 1029–1038.

    CAS  Google Scholar 

  • Zaid A, Hughes H. 1995. A comparison of stomatal function and frequency of in vitro polyethylene glycol treated and greenhouse grown plants of date palm, Phoenix dactylifera L. Tropical Agriculture (Trinidad), 72: 130–134.

    CAS  Google Scholar 

  • Zamani Z, Taheri A, Vezvaei A, Poustini K. 2002. Proline content and stomatal resistance of almond seedlings as affected by irrigation intervals. Acta Horticulture, 491: 411–416.

    Google Scholar 

  • Zhang XZ. 1989. Investigation Methods for Crop Physiology. Beijing: Agric Press of China, p.259.

    Google Scholar 

  • Zhu JK, Shi J, Singh U, Wyatt SE, Bressan RA, Hasegawa PM, Capita NC. 1993. Enrichment of vitronectin and fibronectin like proteins in NaCladapted plant cells and evidence for their involvement in plasma membrane-cell wall adhesion. Plant Journal, 3: 637–646.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karim Sorkheh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajabpoor, S., Kiani, S., Sorkheh, K. et al. Changes induced by osmotic stress in the morphology, biochemistry, physiology, anatomy and stomatal parameters of almond species (Prunus L. spp.) grown in vitro . Journal of Forestry Research 25, 523–534 (2014). https://doi.org/10.1007/s11676-014-0491-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-014-0491-9

Keywords

Navigation