Skip to main content
Log in

Determination of Serum Oxidative Stress, Antioxidant Capacity and Protein Profiles in Dogs Naturally Infected with Ehrlichia canis

  • Original Paper
  • Published:
Acta Parasitologica Aims and scope Submit manuscript

Abstract

Purpose

Canine ehrlichiosis is an important tick-borne disease of dogs worldwide. In the present study, we aimed to determine the serum total antioxidant capacity (TAC), malondialdehyde (MDA), nitric oxide (NO), superoxide dismutase, (SOD), glutathione peroxidase (GSH-Px), adenosine deaminase (ADA) activity and serum protein profiles in dogs affected with naturally acquired ehrlichiosis.

Methods

The animal materials had been consisted of ten dogs naturally infected with Ehrlichia canis, and ten controls negative for Ehrlichia canis. TAC, MDA, NO, SOD, GSH-Px, ADA activity and TP, ALB, GLOB levels were measured in sera of the animals. The serum protein concentrations were measured by autoanalyzer. The electrophoretic profiles of serum total protein were determined by native polyacrylamide gel electrophoresis (Native-PAGE).

Results

In dogs with ehrlichiosis, decreased TAC (P < 0.05) and GSH-Px (P > 0.05) levels were determined. However, NO (P > 0.05), SOD (P < 0.05), ADA (P > 0.05), MDA (P > 0.05), TP (P < 0.05) and GLO (P < 0.05) levels were found as increased in the Ehrlichia positive dogs. ALB levels were decreased without a statistical significance (P > 0.05). ALB, α1 and β2 globulin strip densities were found as decreased in native-PAGE, while β1 and γ globulin strip densities were significantly increased in the E. canis positive group when compared to the control.

Conclusion

It was determined that the oxidative stress decreased high antioxidant activity in dogs naturally infected with E. canis, and consequently, pro-oxidant and antioxidant defense and serum protein profiles were affected. It was thought that antioxidant supplementation could be beneficial to the treatment of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Zweygarth E, Cabezas-Cruz A, Josemans AI, Oosthuizen MC, Matjila PT, Lis K et al (2014) In vitro culture and structural differences in the major immunoreactive protein gp36 of 247 geographically distant Ehrlichia canis isolates. Ticks Tick Borne Dis 5:423–431. https://doi.org/10.1016/j.ttbdis.2014.01.011

    Article  PubMed  Google Scholar 

  2. Mylonakis ME, Koutinas AF, Breitschwerdt EB et al (2004) Chronic canine ehrlichiosis (Ehrlichia canis): a retrospective study of 19 natural cases. J Am Anim Hosp Assoc 40:174–184. https://doi.org/10.5326/0400174

    Article  PubMed  Google Scholar 

  3. Harrus S, Waner T, Avidar Y, Bogin E, Huo-Cheng P, Bark H (1996) Serum protein alterations in canine ehrlichiosis. Vet Parasitol 66:241–249. https://doi.org/10.1016/j.micpath.2017.10.024

    Article  CAS  PubMed  Google Scholar 

  4. Lykkesfeldt J, Svendsen O (2007) Oxidants and antioxidants in disease: oxidative stress in farm animals. Vet J 173:502–511. https://doi.org/10.1016/j.tvjl.2006.06.005

    Article  CAS  PubMed  Google Scholar 

  5. Gate L, Paul J, Ba GN, Tew KD, Tapiero H (1999) Oxidative stress induced in pathologies: the role of antioxidants. Biomed Pharmacother 53(4):169–180. https://doi.org/10.1016/S0753-3322(99)80086-9

    Article  CAS  PubMed  Google Scholar 

  6. Argqelles S, Garcıa S, Maldonado M, Machado A, Ayala A (2004) Do the serum oxidative stress biomarkers provide a reasonableindex of the general oxidative stress status? Biochim Biophys Acta 1674:251–259. https://doi.org/10.1016/j.bbagen.2004.06.023

    Article  CAS  Google Scholar 

  7. Beckman JS, Koppenol WH (1996) Nitric oxide, superoxide and peroxynitrite the good the bad and the ugly. Am J Physiol 271:C1424–C1437. https://doi.org/10.1152/ajpcell.1996.271.5.C1424

    Article  CAS  PubMed  Google Scholar 

  8. Ganheim C, Hulten C, Carlsson U, Kindahl H, Niskanen R, Waller KP (2003) The acute phase response in calves experimentally infected with bovine viral diarrhoea virus and/or Mannheimia haemolytica. J Vet Med B Infect Dis Vet Public Health 50(4):183–190. https://doi.org/10.1046/j.1439-0450.2003.00658.x

    Article  CAS  PubMed  Google Scholar 

  9. Da Silva AS, França RT, Costa MM, Paim FC, Pimentel VC, Schmatz R et al (2013) Adenosine levels in serum and adenosine deaminase activity in blood cells of dogs infected by Rangelia vitalii. J Parasitol 99:1125–1128. https://doi.org/10.1645/13-176.1

    Article  CAS  PubMed  Google Scholar 

  10. Jenkins MA (1999) Serum protein electrophoresis. Clinical applications of capillary electrophoresis. Methods Mol Med 27:11–20. https://doi.org/10.1002/elps.20147006

    Article  CAS  PubMed  Google Scholar 

  11. Breitschwerdt B, Bhegarty EC, Hancock SI (1999) Sequential evaluation of dogs naturally infected with Ehrlichia canis, Ehrlichia chaffensis, Ehrlichia equi, Ehrlichia ewingii, or Bartonella vinsonii. J Clin Microbiol 36:2645–2651. https://doi.org/10.1385/1-59259-689-4:1

    Article  Google Scholar 

  12. Woolliams JA, Wiener G, Anderson PH, McMurray CH (1983) Variation in the activities of glutathione peroxidase and superoxide dismutase and in the concentration of copper in the blood in various breed crosses of sheep. Res Vet Sci 34:253–256. https://doi.org/10.1016/s0034-5288(18)32219-7

    Article  CAS  PubMed  Google Scholar 

  13. Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70:158–169. https://doi.org/10.5555/uri:pii:0022214367900765

    Article  CAS  PubMed  Google Scholar 

  14. Erel O (2005) A new automated colorimetric method for measuring total oxidant status. Clin Biochem 38:1103–1111. https://doi.org/10.1016/j.clinbiochem.2005.08.008

    Article  CAS  PubMed  Google Scholar 

  15. Giusti G, Galanti B (1984) Colorimetric method. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Verlag Chemie, Weinheim, pp 315–323

    Google Scholar 

  16. Jentzsch AM, Bachmann H, Fürst P, Biesalski HK (1996) 21 Improved analysis of malondialdehyde in human body fluids. Free Radic Biol Med 20(2):251–256. https://doi.org/10.1016/0891-5849(95)02043-8

    Article  CAS  PubMed  Google Scholar 

  17. Parish CR, Marchalonis JJ (1970) A simple and rapid acrylamide gel method for estimating the molecular weights of proteins and protein subunits. Anal Biochem 34(2):436–450. https://doi.org/10.1016/0003-2697(70)90128-4

    Article  CAS  PubMed  Google Scholar 

  18. Candiano G, Bruschi M, Musante L, Santucci L, Ghiggeri GM, Carnemolla B, Orecchia P, Zardi L, Righetti PG (2004) Blue Silver: a very sensitive colloidal coomassie g-250 276 staining for proteome analysis. Electrophoresis 25:1327–1333. https://doi.org/10.1002/elps.200305844

    Article  CAS  PubMed  Google Scholar 

  19. Rao CR (1973) Linear statistical inference and its applications, 2nd edn. Wiley, New York. https://doi.org/10.1002/zamm.19770570832

    Book  Google Scholar 

  20. Kovacic P, Cooksy A (2005) Iminium metabolite mechanism for nicotinic toxicity and addiction: oxidative stress and electron transfer. Med Hypotheses 64:104–111. https://doi.org/10.1016/j.mehy.2004.03.048

    Article  CAS  PubMed  Google Scholar 

  21. Van Haaften RI, Haenen GR, Evelo CT, Bast A (2003) Effect of vitamin E on glutathione dependent enzymes. Drug Metab Rev 35:215–253. https://doi.org/10.1081/dmr-120024086

    Article  PubMed  Google Scholar 

  22. Chaudhuri S, Varshney JP, Patra RC (2008) Erythrocytic antioxidant defense, lipid peroxides level and blood iron, zinc and copper concentrations in dogs naturally infected with Babesia gibsoni. Res Vet Sci 85:120–124. https://doi.org/10.1016/j.rvsc.2007.09.001

    Article  CAS  PubMed  Google Scholar 

  23. Raes M, Michiels C, Remacle J (1987) Comparative study of the enzymatic defense systems against oxygen-derived free radicals: the key role of glutathione peroxidase. Free Radic Biol Med 3(1):3–7. https://doi.org/10.1016/0891-5849(87)90032-3

    Article  CAS  PubMed  Google Scholar 

  24. Britti D, Sconza S, Morittu VM, Santori D, Boari A (2008) Superoxide dismutase and glutathione peroxidase in the blood of dogs with Leishmaniasis. Vet Res Commun 32:S251–S254. https://doi.org/10.1007/s11259-008-9121-3

    Article  PubMed  Google Scholar 

  25. Kocyiğit A, Gurel M, Ulukanlı M (2003) Erythrocyte antioxidative enzyme activities and lipid peroxidation levels in patients with cutaneous leishmaniasis. Parasite 10:277–281. https://doi.org/10.1051/parasite/2003103277

    Article  PubMed  Google Scholar 

  26. Serarslan G, Atik E (2005) Expression of inducible nitric oxide synthase in human cutaneous leishmaniasis. Mol Cell Biochem 280:147–149. https://doi.org/10.1007/s11010-005-8542-3

    Article  CAS  PubMed  Google Scholar 

  27. Biswas T, Ghosh DK, Mukherjee N, Ghosal J (1997) Lipid peroxidation of erythrocytes in visceral leishmaniasis. J Parasitol 83(1):151–152. https://doi.org/10.1007/BF00944601

    Article  CAS  PubMed  Google Scholar 

  28. Ozan ST, Yaralıoğlu S, Yılmaz S (1999) GSH-Px, G6PD and arginase activities and some biochemical parameters in cattle infected with Theileria annuluta. Turk J Vet Anim Sci 23:553–557

    Google Scholar 

  29. Bildik A, Kargin F, Seyrek K, Pasa S, Ozensoy S (2004) Oxidative stress and non-enzymatic antioxidative status in dogs with visceral Leishmaniasis. Res Vet Sci 77(1):63–66. https://doi.org/10.1016/j.rvsc.2004.01.005

    Article  CAS  PubMed  Google Scholar 

  30. Dusse LMS, Vieira LM, Carvalho MD (2003) Review on nitric oxide. J Braz Pathol Med Lab 39:343–349

    CAS  Google Scholar 

  31. Kang JM, Cheun HI, Kim J, Moon SU, Park SJ, Kim TS, Sohn WM, Na BK (2008) Identification and characterization of a mitochondrial iron-superoxide dismutase of Cryptosporidium parvum. Parasitol Res 103:787–795. https://doi.org/10.1007/s00436-008-1041-1

    Article  PubMed  Google Scholar 

  32. Boutlis CS, Weinberg JB, Baker J, Bockarie MJ, Mgone CS, Cheng Q, Anstey NM (2004) Nitric oxide production and nitric oxide synthase activity in malaria-exposed Papua New Guinean children and adults show longitudinal stability and no association with parasitemia. Infect Immun 72:6932–6938. https://doi.org/10.1128/IAI.72.12.6932-6938.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liew FY (2016) The role of nitric oxide (NO) in parasitic infections. Ann Trop Med Parasitol. https://doi.org/10.1080/00034983.1993.11812822

    Article  Google Scholar 

  34. Munhoz TD, Faria JL, Vargas HG, Fagliari JJ, Santana AE, Machado RZ, Tinucci CM (2012) Experimental Ehrlichia canis infection changes acute-phase proteins. Rev Bras Parasitol Vet 21(3):206–212. https://doi.org/10.1590/s1984-29612012000300006

    Article  PubMed  Google Scholar 

  35. Keita M, Vincendeau P, Buguet A, Cespuglio R, Vallat JM, Dumas M, Bouteille B (2000) Inducible nitric oxide synthase and nitrotyrosine in the central nervous system of mice chronically infected with Trypanosoma brucei brucei. Exp Parasitol 95(1):19–27. https://doi.org/10.1006/expr.2000.4505

    Article  CAS  PubMed  Google Scholar 

  36. Silva DAS, Munhoz TD, Faria JL, Vargas HG, Machado RZ, Almeida TC, Moresco RN, Stefani LM, Tinucci CM (2013) Increase nitric oxide and oxidative stress in dogs experimentally infected by Ehrlichia canis: effect on the pathogenesis of the disease. Vet Microbiol 164(3–4):336–339. https://doi.org/10.1016/j.vetmic.2013.03.003

    Article  CAS  Google Scholar 

  37. Kiral F, Karagenc T, Pasa S, Yenisey C, Seyrek K (2005) Dogs with Hepatozoon canis respond to the oxidative stress by increased production of glutathione and nitric oxide. Vet Parasitol 131:15–21. https://doi.org/10.1016/j.vetpar.2005.04.017

    Article  CAS  PubMed  Google Scholar 

  38. Tonin AA, Weber A, Ribeiro A, Camillo G, Vogel FF, Moura AB, Bochi GV, Moresco RN, Da Silva AS (2015) Serum levels of nitric oxide and protein oxidation in goats seropositive for Toxoplasma gondii and Neospora caninum. Comp Immunol Microbiol Infect Dis 41:55–58. https://doi.org/10.1016/j.cimid.2015.05.002

    Article  CAS  PubMed  Google Scholar 

  39. Baldissera DM, Sousa KCM, Andre MR, Guarda NDS, Moresco RN, Herrera HM, Machado RZ, Jaques JAS, Costa MT, Silva ASD (2015) Nitric oxide, protein oxidation and total antioxidant levels in serum of dogs naturally infected by Ehrlichia canis, Leishmania infantum and Babesia vogeli. Acta Sci Vet 43:1320

    Google Scholar 

  40. Ceron LL, Eckersall PD, Martinez SS (2005) Acute phase proteins in dogs and cats: current knowledge and future perspectives. Vet Clin Pathol 34(2):85–99. https://doi.org/10.1111/j.1939-165x.2005.tb00019.x

    Article  PubMed  Google Scholar 

  41. Leeflang P (1971) Relation between carrier state oxytetracycline administration and immunity in Ehrlichia canis infection. Vet Rec 90:703–704. https://doi.org/10.1136/vr.90.25.703

    Article  Google Scholar 

  42. Piras MA, Gakis C, Budroni M, Andreoni G (1982) Immunological studies in Mediterranean spotted fever. Lancet 1(8283):1249. https://doi.org/10.1016/s0140-6736(82)92375-3

    Article  CAS  PubMed  Google Scholar 

  43. Gakis C, Cappio BA, Pulina G (1998) Enzymes (isoenzyme system) as homeostatic mechanisms the isoenzyme (ADA2) of adenosine deaminase of human monocytesmacrophages as a regulator of the 2’deoxyadenosine. Biochem Mol Biol Int 46:487–494. https://doi.org/10.1080/15216549800204012

    Article  CAS  PubMed  Google Scholar 

  44. Bottari NB et al (2015) Effects of reduction of adenosine deaminase activity in the serum of dogs naturally infected by Ehrlichia canis and Hepatozoon canis. Comp Clin Pathol 24(5):1289–1292. https://doi.org/10.1007/s00580-015-2157-1

    Article  CAS  Google Scholar 

  45. Aktardesh B, Ghalkhani N, Abshenas J, Nematollahi H, Sharifi H (2013) Serum adenosine deaminase as a diagnostic marker of chronic infectious disease in dogs. Online J Vet Res 17(11):592–595

    Google Scholar 

  46. Altuğ N, Ağaoğlu ZT, Yüksek N, Kaya A, Keleş İ (2006) Adenosine deaminase in the diagnosis of white muscle diseases in lambs. Med Weter 62:1007–1010

    Google Scholar 

  47. Kumar V, Sharma A (2009) Adenosine: an endogenous modulator of innate immune system with therapeutic potential. Eur J Pharmacol 616:7–15. https://doi.org/10.1016/j.ejphar.2009.05.005

    Article  CAS  PubMed  Google Scholar 

  48. Gultekin M, Ural K, Pasa S, Balikci C, Asici GSE (2017) Oxidative status and lipid profile in mono and co-infection with canine monocytic ehrlichiosis. Med Weter 73(12):797–801. https://doi.org/10.21521/mw.5817

    Article  Google Scholar 

  49. Rubio CP, Yilmaz Z, Martínez-Subiela S, Kocaturk M, Hernández-Ruiz J, Yalcin E, Ceron JJ (2017) Serum antioxidant capacity and oxidative damage in clinical and subclinical canine ehrlichiosis. Res Vet Sci 115:301–306. https://doi.org/10.1016/j.rvsc.2017.06.004

    Article  CAS  PubMed  Google Scholar 

  50. Escribano D, Cihan H, Martínez-Subiela S, Levent P, Kocaturk M, Aytug N et al (2017) Changes in serum proteins in dogs with Ehrlichia canis infection. Microb Pathog 113:34–39. https://doi.org/10.1016/j.micpath.2017.10.024

    Article  CAS  PubMed  Google Scholar 

  51. Qurollo BA, Buch J, Chandrashekar R, Beall MJ, Breitschwerdt EB, Yancey CB, Caudill AH, Comyn A (2019) Clinico pathological findings in 41 dogs (2008–2018) naturally infected with Ehrlichia ewingii. J Vet Intern Med 33(2):618–629. https://doi.org/10.1111/jvim.15354

    Article  PubMed  PubMed Central  Google Scholar 

  52. Behera S, Dimri U, Banerjee P, Garg R, Dandapat S, Sharma B (2015) Molecular detection and assessment of hemato-biochemistry, oxidant/antioxidant status in natural canine monocytic ehrlichiosis cases from northern India. Proc Indian Natl Sci Acad 87:361–368. https://doi.org/10.1007/s40011-015-0605-y

    Article  CAS  Google Scholar 

  53. Woody BJ, Hoskins JD (1991) Ehrlichial diseases of dogs. Vet Clin N Am Small Anim Pract 21:75–98. https://doi.org/10.1016/s0195-5616(91)50009-7

    Article  CAS  Google Scholar 

  54. Reardon MJ, Pierce KR (1981) Acute experimental canine ehrlichiosis. Sequential reaction of the hemic and lymphoreticular systems. Vet Pathol 18:48–61. https://doi.org/10.1177/030098588101800106

    Article  CAS  PubMed  Google Scholar 

  55. Codner EC, Caceci T, Saunders GK, Smith CA, Robertson JL, Martin RA, Troy GC (1992) Investigation of glomerular lesions in dogs with acute experimentally induced Ehrlichia canis infection. Am J Vet Res 53:2286–2291

    CAS  PubMed  Google Scholar 

  56. Rikihisa Y, Yamamoto S, Kwak I, Iqbal Z, Kociba G, Mott J, Chichanasiriwithaya W (1994) C-reactive protein and α1-acid glycoprotein levels in dogs infected with Ehrlichia canis. J Clin Microbiol 32:912–917. https://doi.org/10.1128/JCM.32.4.912-917.1994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Koj A (1984) Patho-physiology of plasma protein metabolism. Macmillan, London, pp 221–248. https://doi.org/10.1007/978-1-4613-2793-6

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gülay Çiftci.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Ethical approval

The animal procedures were approved by the Local Ethical Committee of University of Adnan Menderes for Animal Studies (certificate no: B.30.2.adü.0.00.00.00.-0.50.0.4.-2010-320 077). The animals were treated according to the Animal Care and Use Regulation as described by European Convention for the Protection of Vertebrate Animals Used for Experimental and Other Scientific Purposes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çiftci, G., Pekmezci, D., Güzel, M. et al. Determination of Serum Oxidative Stress, Antioxidant Capacity and Protein Profiles in Dogs Naturally Infected with Ehrlichia canis. Acta Parasit. 66, 1341–1348 (2021). https://doi.org/10.1007/s11686-021-00411-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11686-021-00411-6

Keywords

Navigation