Skip to main content
Log in

Smart packaging: sensors for monitoring of food quality and safety

  • Original Paper
  • Published:
Sensing and Instrumentation for Food Quality and Safety Aims and scope Submit manuscript

Abstract

The development of chemical sensors and biosensors over several decades has been investigated resulting in novel and very interesting sensor devices with great promise for many areas of applications including food technology. The incorporation of such sensors into the food packaging technology has resulted what we call smart or intelligent packaging. These are truly integrated and interdisciplinary systems that invoke expertise from the fields of chemistry, biochemistry, physics and electronics as well as food science and technology. Smart packaging utilises chemical sensor or biosensor to monitor the quality & safety of food from the producers to the costumers. This technology can result in a variety of sensor designs that are suitable for monitoring of food quality and safety, such as freshness, pathogens, leakage, carbon dioxide, oxygen, pH, time or temperature. Thus, this technology is needed as on-line quality control and safety in term of consumers, authorities and food producers, and has great potential in the development of new sensing systems integrated in the food packaging, which are beyond the existing conventional technologies, like control of weight, volume, colour and appearance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.L. Rooney, Overview of active food packaging, in Active Food Packaging, ed. by M.L. Rooney (Chapman & Hall, New York, 1995), pp. 1–33

    Chapter  Google Scholar 

  2. N.P. Mahalik, Processing and packaging automation systems: a review. Sens. Instrumen. Food Qual. 3, 12–25 (2009)

    Article  Google Scholar 

  3. G. Robertson, Food Packaging Principles and Practices (Taylor & Francis, Boca Raton, 2006)

    Google Scholar 

  4. P. Kotler, K. Keller, Marketing Management (Pearson, Upper Saddle River, 2006)

    Google Scholar 

  5. L. Summers, Intelligent Packaging (Centre for exploitation of Science & Technology, London, 1992)

    Google Scholar 

  6. P. Butler, Smart packaging–intelligent packaging for food, beverages, pharmaceuticals and household products. Mater. World 9(3), 11–13 (2001)

    CAS  Google Scholar 

  7. K.L. Yam, P.T. Takhistov, J. Miltz, Intelligent packaging: concepts and applications. J. Food Sci. 70(1), R1–R10 (2005)

    Article  CAS  Google Scholar 

  8. http://www.darex.container.com (available 10/28/2010)

  9. J.D. Seldman, Time-temperature indicators, in Active Food Packaging, ed. by M.L. Rooney (Chapman & Hall, New York, 1995), pp. 74–107

    Google Scholar 

  10. J.P. Kerry, M.N. O’Grady, S.A. Hogan, Past, current and potential utilization of active and intelligent packaging systems for meat and muscle-based products: a review. Meat Sci. 74, 113–130 (2006)

    Article  CAS  Google Scholar 

  11. I.A. Yezza, in Printed intelligence in packaging: Current and potential applications of nanotechnology, Symposium on Nanomaterials for Flexible Packaging 2009, Columbus; April 30, Code 80863, 2009

  12. D.N. Rani, T.E. Abraham, Kinetic study of a purified anionic peroxidase isolated from Eupatorium odoratum and its novel application as time temperature indicator for food materials. J. Food Eng. 77(3), 594–600 (2006)

    Article  CAS  Google Scholar 

  13. S. Yan, C. Huawei, Z. Limin, R. Fazheng, Z. Luda, Z. Hengtao, Development and characterization of a new amylase type time–temperature indicator. Food Control 19(3), 315–319 (2008)

    Article  Google Scholar 

  14. Y. Galagan, W.-F. Su, Fadable ink for time–temperature control of food freshness: novel new time–temperature indicator. Food Res. Int. 41(6), 653–657 (2008)

    Article  CAS  Google Scholar 

  15. H. Vaikousi, C.G. Biliaderis, K.P. Koutsoumanis, Applicability of a microbial time–temperature indicator (TTI) for monitoring spoilage of modified atmosphere packed minced meat. Int. J. Food Microbiol. 133(3), 272–278 (2009)

    Article  CAS  Google Scholar 

  16. http://www.nanowerk.com/nanotechnology/reports/reportpdf/report61.pdf. (4/29/2010)

  17. Y. Liu, S. Chakrabartty, E. Alocilja, Fundamental building blocks for molecular biowire based forward error-correcting biosensors. Nanotechnology 18, 1–6 (2007)

    Google Scholar 

  18. http://www.wisc.edu/fri/briefs/FRIBrief_Nanotech_Lit_Rev.pdf (02/04/2010)

  19. www.tetrapak.com (available 10/28/2010)

  20. http://solutions.3m.com/wps/portal/3M/en_US/Microbiology/FoodSafety/product-information/product-catalog (10/18/2010)

  21. www.timestrip.com (available 12/10/2010)

  22. www.lifelinestechnology.com (available 12/10/2010)

  23. www.vitsab.com (available 12/10/2010)

  24. A. Pacquit, K.T. Lau, H. McLaughlin, J. Frisby, B. Quilty, D. Diamond, Development of a volatile amine sensor for the monitoring of fish spoilage. Talanta 69, 515–520 (2006)

    Article  CAS  Google Scholar 

  25. A. Nopwinyuwonga, S. Trevanichb, P. Suppakula, Development of a novel colorimetric indicator label for monitoring freshness of intermediate-moisture dessert spoilage. Talanta 81, 1126–1132 (2010)

    Article  Google Scholar 

  26. T. Mattila, J. Tawast, R. Ahvenainen, New possibilities for quality control of aseptic packages: microbiological spoilage and seal defect detection using head-space indicators. Lebensm. Wiss. Technol. 23, 246–251 (1990)

    Google Scholar 

  27. D.F.H. Wallach, A. Novikov, Methods and devices for detecting spoilage in food products, WO 98/20337. (Biodetect corporation, Nashua, 1998)

  28. A. Pacquit, J. Frisby, K.T. Lau, H. McLaughlin, B. Quilty, D. Diamond, Development of a smart packaging for monitoring of fish spoilage. J. Food Chem. 102, 466–470 (2007)

    Article  CAS  Google Scholar 

  29. T.J. Horan, Method for determining bacterial contamination in food package, US 5753285 (1998)

  30. A.C. Cameron, T. Talasila in Modified-atmosphere packaging of fresh fruits and vegetables, IFT Annual Meeting, Book of Abstracts, 1995, p. 254

  31. M. Smolander, E. Hurme, R. Ahvenainen, M. Siika-aho in Indicators for modified atmosphere packages. 24th IAPRI Symposium, Rochester, 22–24 June 1998

  32. http://www.ripesense.com (available 12/10/2010)

  33. Q. Shen, F. Kong, Q. Wang, Effect of modified atmosphere packaging on the browning and lignification of bamboo shoots. J. Food Eng. 77(2), 348–354 (2006)

    Article  CAS  Google Scholar 

  34. M. Smolander, E. Hurme, R. Ahvenainen, Leak indicators for modified-atmosphere packages. Trend. Food Sci. Technol. 8, 101–106 (1997)

    Article  CAS  Google Scholar 

  35. Y. Abe, Active packaging with oxygen absorbers in Minimal Processing of Foods, VTT Symposium 142, ed. by R. Ahvenainen, T. Mattila-Sandholm, T. Ohlsson (VTT, 1994) pp. 209–223

  36. E. Hurme, R. Ahvenainen, Active and smart packaging of ready-made foods, in Minimal Processing and Ready Made Foods, ed. by T. Ohlsson, R. Ahvenainen, T. Mattila-Sandholm (Göteborg, SIK, 1996) pp. 169–182

  37. Anonym, Tufflex GS product Information, Sealed Air (FPD) Limited, (Telford, UK, 1996)

  38. H. Nakamura, N. Nakazawa, Y. Kawamura, Food Oxidation Indicating Material-Comprises Oxygen Absorbtion Agent Containing Indicator Composed of Methylene Blue, Reducing Agent and Resin Binder, JP 62–183834 (Toppan Printing Co. Ltd., Tokyo, 1987)

    Google Scholar 

  39. M. Goto, Oxygen Indicator, JP 62–259059 (Mitsubishi Gas Chemical Co. Inc, Tokyo, 1987)

    Google Scholar 

  40. N. LeNarvor, J.-R. Hamon, C. Lapinte, Dispositif de Détection de Présence et de Disparition d’une Substance Cible et son Utilisation dans les Emballages de Conservation (Detecting the presence and disappearance of a gaseous target substance-using an indicator which forms a colored reaction product with the substance, and an antagonist which modifies the colour of the reaction product), FR 2710751, (ATCO, Caen, 1993)

  41. T. Mattila-Sandholm, R. Ahvenainen, E. Hurme, T. Järvi-Kääriäinen, Oxygen sensitive colour indicator for detecting leaks in gas-protected food packages, EP 0666977 (Technical Research Centre of Finland (VTT), Espoo, 1998)

    Google Scholar 

  42. D. Perlman, H. Linschitz, Oxygen Indicator for Packaging, US 4526752 (1985)

  43. Y. Shirozaki, Oxygen Indicator, Rendering Reagent having Oxygen Detecting Capacity to Polyethylene, JP 2–57975 (Nippon Kayaku KK, Tokyo, 1990)

    Google Scholar 

  44. H. Yamamoto, Laminated oxygen indicator labels for food packages JP 4151557 (Dainippon Printing, Tokyo, 1992)

    Google Scholar 

  45. Y. Yoshikawa, T. Nawata, M. Goto, Y. Fujii, Oxygen Indicator, US 4169811 (Mitsubishi Gas Chemical Co. Inc., Tokyo, 1979)

    Google Scholar 

  46. Y. Yoshikawa, T. Nawata, M. Goto, Y. Kondo, Oxygen Indicator Adapted for Printing or Coating and Oxygen-Indicating Device, US 4349509 (Mitsubishi Gas Chemical Co. Inc., Tokyo, 1982)

    Google Scholar 

  47. A.E. Gardiol, R.J. Hernandez, B. Reinhammar, B.R. Harte, Development of a gas-phase oxygen biosensor using a blue copper containing oxidase. Enz. Microb. Technol. 18, 347–352 (1996)

    Article  CAS  Google Scholar 

  48. E.S. Davies, C.D. Garner, Oxygen Indicating Composition, UK Patent Application GB 2 298273 (The Victoria University of Manchester, Manchester, 1996)

    Google Scholar 

  49. R. Ahvenainen, E. Hurme, Active and smart packaging for meeting consumer demands for quality and safety. Food Addit. Contam. 14, 753–763 (1997)

    Article  CAS  Google Scholar 

  50. S.N. Balderson, R.J. Whitwood, Gas Indicator for a Package, US 5439648 (Trigon Industries Limited, Auckland, 1995)

    Google Scholar 

  51. B.T. DeCicco, J.K. Keeven, Detection system for microbial contamination in health-care products, US 5443987 (1995)

  52. E. Kress-Rogers, The marker concept: Frying oil monitor and meat freshness sensor, in Instrumentation and Sensors for the food industry ed. by Kress-Rogers, (Butterworth-Heinemann: Stoneham, Mass. 1993) p. 523

  53. L.A. Terry, G. Volpe, G. Palleschi, A.P.F. Turner, Biosensors for the microbial analysis of food. Food Sci. Technol. 18(4), 22–24 (2004)

    Google Scholar 

  54. V. Parry, Food fight on the tiny scale. Times (London, Oct) 21, (2006)

  55. B.D. Lawrence, M. Cronin-Golomb, I. Georgakoudi, D.L. Kaplan, F.G. Omenetto, Bioactive silk protein biomaterial systems for optical devices. Biomacromolecules 9, 1214–1220 (2008)

    Article  CAS  Google Scholar 

  56. R.J. Retama, Synthesis and characterization of semiconducting polypyrrole/polyacrylamide microparticles with GOx for biosensor applications. Colloids Surf. A. Phys. Chem. Eng. Asp. 7, 239–244 (2005)

    Article  Google Scholar 

  57. T. Ahuja, I.A. Mir, D. Kumar, R. Rajesh, Biomolecular immobilization on conducting polymers for biosensing applications. Biomaterials 28, 791–805 (2007)

    Article  CAS  Google Scholar 

  58. K. Arshak, C. Adley, E. Moore, C. Cunniffe, M. Campion, J. Harris, Characterisation of polymer nanocomposite sensors for quantification of bacterial cultures. Sens. Actuat. B 126, 226–231 (2007)

    Article  Google Scholar 

  59. A. Galdikas, A. Mironas, V. Senuliene, A. Šetkus, D. Zelenin, Response time based output of metal oxide gas sensors applied to evaluation of meat freshness with neural signal analysis. Sens. Actuat. B 69, 258–265 (2000)

    Article  Google Scholar 

  60. V. Subramanian, J.M.J. Frechet, P.C. Chang, D.C. Huang, J.B. Lee, S.E. Molesa, A.R. Murphy, D.R. Redinger, Progress toward development of all-printed RFID tags: materials, processes, and devices. Proc. IEEE 93, 1330–1338 (2005)

    Article  CAS  Google Scholar 

  61. M.M. Tentzeris, in Novel paper-based inkjet-printed antennas and wireless sensor modules, IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems. (IEEE Tel-Aviv, Israel, 2008)

  62. K.J. Loh, J.P. Lynch, N.A. Kotov, in Passive wireless sensing using SWNT-based multifunctional thin film patches, 13th International Symposium on Applied Electromagnetics and Mechanics. (Ios Press ,E Lansing, 2007)

  63. S. Demoustier, E. Minoux, M. Le Baillif, M. Charles, A. Ziai, Review of two microwave applications of carbon nanotubes: nano-antennas and nano-switches. Comptes Rendus Physique 9, 53–66 (2008)

    Article  CAS  Google Scholar 

  64. R. Jedermann, C. Behrens, D. Westphal, W. Lamg, Applying autonomous sensor systems in logistics-combining sensor networks, RFIDs and software agents. Sens. Actuat. A 132, 370–375 (2006)

    Article  Google Scholar 

  65. R.A. Potyrailo, H. Mouquin, W.G. Morros, Position-independent chemical quantitation with passive 13.56-MHz radio frequency identification (RFID) sensors. Talanta 75, 624–628 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors gratefully thank the DP2M, Higher Education, Ministry of National Education, Republic of Indonesia for supporting this work via the International Research Collaboration Program 2010 (Penelitian Kerjasama Luar Negeri dan Publikasi Internasioanl No. 438/SP2H/PP/DP2M/III/2010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bambang Kuswandi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuswandi, B., Wicaksono, Y., Jayus et al. Smart packaging: sensors for monitoring of food quality and safety. Sens. & Instrumen. Food Qual. 5, 137–146 (2011). https://doi.org/10.1007/s11694-011-9120-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-011-9120-x

Keywords

Navigation