Skip to main content
Log in

Synthesis and characterization of hydrothermally synthesized superparamagnetic APTS–ZnFe2O4 nanoparticles: DNA binding studies for exploring biomedical applications

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Nanosized mixed transition metal oxides or spinel ferrites are the most rivet class of nanomaterials due to their exceptional optical, structural and most importantly superior magnetic properties. These properties stored in ZnFe2O4 make it an apt contender to offer incomparable magnetic nanodevices for biomedical applications. These applications demand high magnetization, controllable size/size distribution and an appropriate, biocompatible non-toxic surface coating. Therefore, the aim of this study was to synthesize (3-aminopropyl)triethoxysilane (APTS) modified ZnFe2O4 nanoparticles via hydrothermal method and to investigate interaction of synthesized nanoparticles with calf thymus DNA using various physicochemical techniques. Structural characterization of particles was done using XRD, FTIR, FE-SEM, VSM, zeta potential and UV–Visible spectroscopy. Average grain size of APTS-coated ZnFe2O4 nanoparticles as calculated from XRD was found to be nearly 8 nm. A lower saturation magnetization (Ms) value in case of APTS–ZnFe2O4 over uncoated ZnFe2O4 reveals successful addition of non-magnetic material (APTS) to ZnFe2O4 nanoparticles. Binding studies of nanoparticles with DNA were performed using UV–Visible, fluorescence and circular dichroism spectroscopy. Physicochemical studies of this nano-bioconjugate system reveal significant structural and conformational alterations in calf thymus DNA on external contact of nanoparticles. On correlation, all studies suggested that interaction between nanoparticles and DNA is mainly governed by electrostatic interaction. These findings might provide insights into the study of these nanoparticles in drug delivery and for designing of magnetic nanodevices for biomedical applications.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Al-Hada NM, Halimah MK, Shaari AH, Saion E, Aziz SA, Mustafa IS (2019) Structural and morphological properties of manganese-zinc ferrite nanoparticles prepared by thermal treatment route. In: Solid state phenomena, vol 290. Trans Tech Publications, pp 307–313

  • Andrade ÂL, Valente MA, Ferreira JM, Fabris JD (2012) Preparation of size-controlled nanoparticles of magnetite. J Magn Magn Mater 324(10):1753–1757

    CAS  Google Scholar 

  • Bi S, Qiao C, Song D, Tian Y, Gao D, Sun Y, Zhang H (2006) Study of interactions of flavonoids with DNA using acridine orange as a fluorescence probe. Sens Actuator B Chem 119(1):199–208

    CAS  Google Scholar 

  • Cao H, He J, Deng L, Gao X (2009) Fabrication of cyclodextrin-functionalized superparamagnetic Fe3O4/amino-silane core–shell nanoparticles via layer-by-layer method. Appl Surf Sci 255(18):7974–7980

    CAS  Google Scholar 

  • Carvalho MD, Henriques F, Ferreira LP, Godinho M, Cruz MM (2013) Iron oxide nanoparticles: the influence of synthesis method and size on composition and magnetic properties. J Solid State Chem 201:144–152

    CAS  Google Scholar 

  • Chinnasamy CN, Narayanasamy A, Ponpandian N, Chattopadhyay K, Guerault H, Greneche JM (2000) Magnetic properties of nanostructured ferrimagnetic zinc ferrite. J Phys Matter 12(35):7795

    CAS  Google Scholar 

  • Demirer GS, Okur AC, Kizilel S (2015) Synthesis and design of biologically inspired biocompatible iron oxide nanoparticles for biomedical applications. J Mater Chem B 3(40):7831–7849

    CAS  Google Scholar 

  • Dhiman M, Sharma R, Kumar V, Singhal S (2016) Morphology controlled hydrothermal synthesis and photocatalytic properties of ZnFe2O4 nanostructures. Ceram Int 42(11):12594–12605

    CAS  Google Scholar 

  • Figuerola A, Di Corato R, Manna L, Pellegrino T (2010) From iron oxide nanoparticles towards advanced iron-based inorganic materials designed for biomedical applications. Pharmacol Res 62(2):126–143

    CAS  PubMed  Google Scholar 

  • Han LA, Zhai WL, Bai B, Zhu HZ, Yang J, Yan ZX, Zhang T (2019) Critical behavior in Ni0.15 Cu0.15 Zn0.7 Fe2O4 spinel ferrite. Ceram Int 45(11):14322–14326

    CAS  Google Scholar 

  • Kanagesan S, Hashim M, Ab Aziz S, Ismail I, Tamilselvan S, Alitheen N, Purna Chandra Rao B (2016) Evaluation of antioxidant and cytotoxicity activities of copper ferrite (CuFe2O4) and zinc ferrite (ZnFe2O4) nanoparticles synthesized by sol-gel self-combustion method. Appl Sci 6(9):184

    Google Scholar 

  • Kelly SJ, Wen X, Arnold DP, Andrew JS (2016) Electrophoretic deposition of nickel zinc ferrite nanoparticles into microstructured patterns. AIP Adv 6(5):056105

    Google Scholar 

  • Komal, Sonia, Kukreti S, Kaushik M (2019) Exploring the potential of environment friendly silver nanoparticles for DNA interaction: physicochemical approach. J Photochem Photobiol B 194:158–165

    CAS  PubMed  Google Scholar 

  • Laokul P, Amornkitbamrung V, Seraphin S, Maensiri S (2011) Characterization and magnetic properties of nanocrystalline CuFe2O4, NiFe2O4, ZnFe2O4 powders prepared by the Aloe vera extract solution. Curr Appl Phys 11(1):101–108

    Google Scholar 

  • Lei W, Liu Y, Si X, Xu J, Du W, Yang J, Lin J (2017) Synthesis and magnetic properties of octahedral Fe3O4 via a one-pot hydrothermal route. Phys Lett A 381(4):314–318

    CAS  Google Scholar 

  • Liu Q, Huang H, Lai L, Sun J, Shang T, Zhou Q, Xu Z (2009) Hydrothermal synthesis and magnetic properties of NiFe2O4 nanoparticles and nanorods. J Mater Sci 44(5):1187–1191

    CAS  Google Scholar 

  • Manonmani M, Senthil VP, Gajendiran J, Ramya JR, Sivakumar N, Jaikumar V, Kumar GR (2019) A study of the structural, magnetic, hemocompatibility and electrochemical properties of BiFeO 3 (BFO)/CoFe 2 O 4 − (CFO) nanocomposite. J Mater Sci Mater Electron 30(11):10934–10943

    CAS  Google Scholar 

  • Nasrollahzadeh M, Bagherzadeh M, Karimi H (2016) Preparation, characterization and catalytic activity of CoFe2O4 nanoparticles as a magnetically recoverable catalyst for selective oxidation of benzyl alcohol to benzaldehyde and reduction of organic dyes. J Colloid Interface Sci 465:271–278

    CAS  PubMed  Google Scholar 

  • Pershina AG, Sazonov AE, Filimonov VD (2014) Magnetic nanoparticles–DNA interactions: design and applications of nanobiohybrid systems. Russ Chem Rev 83(4):299

    Google Scholar 

  • Rahban M, Divsalar A, Saboury AA, Golestani A (2010) Nanotoxicity and spectroscopy studies of silver nanoparticle: calf thymus DNA and K562 as targets. J Phys Chem C 11(13):5798–5803

    Google Scholar 

  • Rameshbabu R, Ramesh R, Kanagesan S, Karthigeyan A, Ponnusamy S (2014) One pot facile hydrothermal synthesis of superparamagnetic ZnFe2O4 nanoparticles and their properties. J Sol-Gel Sci Technol 71(1):147–151

    CAS  Google Scholar 

  • Rehman SU, Sarwar T, Husain MA, Ishqi HM, Tabish M (2015) Studying non-covalent drug-DNA interactions. Arch Biochem Biophys 576:49–60

    PubMed  Google Scholar 

  • Ribeiro APC, Anbu S, Alegria ECBA, Fernandes AR, Baptista PV, Mendes R, Pombeiro AJL (2018) Evaluation of cell toxicity and DNA and protein binding of green synthesized silver nanoparticles. Biomed Pharmacother 101:137–144

    CAS  PubMed  Google Scholar 

  • Roy S, Sadhukhan R, Ghosh U, Das TK (2015) Interaction studies between biosynthesized silver nanoparticle with calf thymus DNA and cytotoxicity of silver nanoparticles. Spectrochim Acta Part A Mol Biomol Spectrosc 141:176–184

    CAS  Google Scholar 

  • Senthil VP, Gajendiran J, Raj SG, Shanmugavel T, Kumar GR, Reddy CP (2018) Study of structural and magnetic properties of cobalt ferrite (CoFe2O4) nanostructures. Chem Phys Lett 695:19–23

    CAS  Google Scholar 

  • Shahabadi N, Hadidi S (2012) Spectroscopic studies on the interaction of calf thymus DNA with the drug levetiracetam. Spectrochim Acta Part A Mol Biomol Spectrosc 96:278–283

    CAS  Google Scholar 

  • Singh A, Neelam, Kaushik M (2019) Physicochemical investigations of zinc oxide nanoparticles synthesized from Azadirachta indica (Neem) leaf extract and their interaction with Calf-Thymus DNA. Results in Phys 13:102168

    Google Scholar 

  • Sinthiya MM, Ramamurthi K, Mathuri S, Manimozhi T, Kumaresan N, Margoni MM, Karthika PC (2015) Synthesis of zinc ferrite (ZnFe2O4) nanoparticles with different capping agents. Int J Chem Tech Res 7:2144–2149

    CAS  Google Scholar 

  • Sirajuddin M, Ali S, Badshah A (2013) Drug–DNA interactions and their study by UV– Visible, fluorescence spectroscopies and cyclic voltammetry. J Photochem Photobiol B 124:1–19

    CAS  PubMed  Google Scholar 

  • Sohrabi N (2015) Binding and uv/vis spectral investigation of interaction of Ni (ii) piroxicam complex with calf thymus deoxyribonucleic acid (Ct-DNA): a thermodynamic approach. J Pharm Sci Res 7(8):533

    CAS  Google Scholar 

  • Sohrabijam Z, Saeidifar M, Zamanian A (2017) Enhancement of magnetofection efficiency using chitosan coated superparamagnetic iron oxide nanoparticles and calf thymus DNA. Colloids Surf B 152:169–175

    CAS  Google Scholar 

  • Sonia, Komal, Kukreti S, Kaushik M (2018) Exploring the DNA damaging potential of chitosan and citrate-reduced gold nanoparticles: physicochemical approach. Int J Biol Macromol 115:801–810

    PubMed  Google Scholar 

  • Sundar S, Mariappan R, Piraman S (2014) Synthesis and characterization of amine modified magnetite nanoparticles as carriers of curcumin-anticancer drug. Powder Technol 266:321–328

    CAS  Google Scholar 

  • Suo Z, Chen J, Hou X, Hu Z, Xing F, Feng L (2019) Growing prospects of DNA nanomaterials in novel biomedical applications. RSC Adv 9(29):16479–16491

    CAS  Google Scholar 

  • Vinosha PA, Mely LA, Jeronsia JE, Krishnan S, Das SJ (2017) Synthesis and properties of spinel ZnFe2O4 nanoparticles by facile co-precipitation route. Optik Int J Light Electron Opt 134:99–108

    CAS  Google Scholar 

  • Wang J (2006) Prepare highly crystalline NiFe2O4 nanoparticles with improved magnetic properties. Mater Sci Eng B 127(1):81–84

    CAS  Google Scholar 

  • Wang J, Sun J, Sun Q, Chen Q (2003) One-step hydrothermal process to prepare highly crystalline Fe3O4 nanoparticles with improved magnetic properties. Mater Res Bull 38(7):1113–1118

    CAS  Google Scholar 

  • Wu W, He Q, Jiang C (2008) Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett 3(11):397–415

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu W, Wu Z, Yu T, Jiang C, Kim WS (2015) Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci Technol Adv Mater 16(2):023501

    PubMed  PubMed Central  Google Scholar 

  • Yang D, Wei K, Liu Q, Yang Y, Guo X, Rong H, Wang G (2013) Folic acid-functionalized magnetic ZnFe2O4 hollow microsphere core/mesoporous silica shell composite particles: synthesis and application in drug release. Mater Sci Eng C 33(5):2879–2884

    CAS  Google Scholar 

  • Zhang ZJ, Chen XY, Wang BN, Shi CW (2008) Hydrothermal synthesis and self-assembly of magnetite (Fe3O4) nanoparticles with the magnetic and electrochemical properties. J Cryst Growth 310(24):5453–5457

    CAS  Google Scholar 

  • Zhang J, Song JM, Niu HL, Mao CJ, Zhang SY, Shen YH (2015) ZnFe 2 O 4 nanoparticles: synthesis, characterization, and enhanced gas sensing property for acetone. Sens Actuators B Chem 221:55–62

    CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the Director (Cluster Innovation Centre) and Head (Department of Chemistry) University of Delhi, Delhi, for their constant support. Also, authors sincerely acknowledge Prof. Shrikant Kukreti (Department of Chemistry) for his constant encouragement and extending his lab facilities.

Also, authors are obliged to DU-DST Purse Grant of Dept. of Science and Technology, Delhi, India, for necessary funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahima Kaushik.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, N., Singh, A. & Kaushik, M. Synthesis and characterization of hydrothermally synthesized superparamagnetic APTS–ZnFe2O4 nanoparticles: DNA binding studies for exploring biomedical applications. Chem. Pap. 74, 1177–1188 (2020). https://doi.org/10.1007/s11696-019-00953-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-019-00953-0

Keywords

Navigation