Skip to main content

Advertisement

Log in

The interaction of hydrogen with heteroatoms (B, N)-doped porous graphene: A computational study

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Based on first-principles computations, the adsorption ability of hydrogen on heteroatom (B, N)-doped porous graphene has been illustrated. It is found that the adsorption energy (− 0.117 ~ − 0.173 eV) of hydrogen on heteroatom (B, N)-doped porous graphene meets the optimal adsorption energy (− 0.1 ~ − 0.2 eV) on high-performance adsorbent, indicating that the porosity and heteroatom dopant would be the important role for the H2 adsorption. In addition, the interaction is found to be enhanced by applying positive and negative charges into the system. More important, we demonstrate that the adsorption energy can be dramatically increased to − 0.738 eV on the B-doped porous graphene with one positive charge. The H2 adsorption/desorption process on the positively charged B-doped porous graphene is spontaneous, reversible, and readily controlled by injecting/removing the additional positive charge. The gravimetric density is predicted to be 10.8 wt % on the positively charged B-doped porous graphene.

Graphic abstract

Based on density functional theory computations, we investigate the adsorption ability of hydrogen on heteroatom (B, N)-doped porous graphene. Calculation results show that the H2 adsorption/desorption process on the positively charged B-doped porous graphene is spontaneous and reversible with fast kinetics and readily controlled by the adding/removing the additional positive charge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bieri M, Treier M, Cai JM, Aı¨tMansour K, Ruffieus P, Gro¨ning O, Gro¨ning P, Kastler M, Rieger R, Feng XL, Mu¨llen K, Fasel R (2009) Porous graphenes: two-dimensional polymer synthesis with atomic precision. Chem Commun 45:6919–6921

    Article  Google Scholar 

  • Bieri M, Nguyen M, Gro¨ning O, Cai JM, Treier M, Aı¨tMansour K, Ruffieus P, Pignedoli C, Passerone D, Kastler M, Mu¨llen K, Fasel R (2010) Two-dimensional polymer formation on surfaces: insight into the roles of precursor mobility and reactivity. J Am Chem Soc 132:16669

    Article  CAS  PubMed  Google Scholar 

  • Bodrenko IV, Avdeenkov AV, Bessarabov DG, Bibikov AV, Nikolaev AV, Taran MD, Tkalya EV (2012) Hydrogen storage in aromatic carbon ring based molecular materials decorated with alkali or alkali-earth metals. J Phys Chem C 116:25286–25292

    Article  CAS  Google Scholar 

  • Bromley BP (2002) Tomorrow’s energy: hydrogen, fuel cell, and the prospects for a clean plant. Health Phys 82(3):401

    Article  CAS  Google Scholar 

  • Côté AP, Benin AI, Ockwig NW, O’Keeffe M, Matzger AJ, Yaghi OM (2005) Porous, crystalline, covalent organic frameworks. Science 310:1166–117

    Article  PubMed  Google Scholar 

  • Delley B (1990) An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys 92:508

    Article  CAS  Google Scholar 

  • Delley B (2003) From molecules to solids with the DMol3 approach. J Chem Phys 113:7756

    Article  Google Scholar 

  • Dillon AC, Jones KM, Bekkedahl TA, Klang CH, Bethune DS, Heben MJ (1997) Storage of hydrogen in single-walled carbon nanotubes. Nature 386:377–379

    Article  CAS  Google Scholar 

  • Ding Y, Wang YL, Shi SQ, Tang WH (2011) Electronic structures of porous graphene, BN, and BC2N sheets with one- and two-hydrogen passivations from first principles. J Phys Chem C 115:5334–5343

    Article  CAS  Google Scholar 

  • Du A, Zhu Z, Smith SC (2010) Multifunctional porous graphene for nanoelectronics and hydrogen storage: new properties revealed by first principle calculation. J Am Chem Soc 132:2876–2877

    Article  CAS  PubMed  Google Scholar 

  • Furukawa H, Yaghi OM (2009) Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. J Am Chem Soc 131:8875–8883

    Article  CAS  PubMed  Google Scholar 

  • Furukawa H, Ko N, Go YB, Aratani N, Chio SB, Chio E, Yazaydin AÖ, Snurr RQ, O’Keeffe M, Kim J, Yaghi OM (2010) Ultrahigh porosity in metal-organic frameworks. Science 329:424–428

    Article  CAS  PubMed  Google Scholar 

  • Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799

    Article  CAS  PubMed  Google Scholar 

  • Hehre WJ (1976) Ab initio molecular orbital theory. Acc Chem Res 9:399–406

    Article  CAS  Google Scholar 

  • Heine T, Zhechkov L, Seifert G (2004) Hydrogen storage by physisorption on nanostructured graphite platelets. Phys Chem Chem Phys 6:980–984

    Article  CAS  Google Scholar 

  • Huang H-W, Hsieh H-J, Lin I-H, Tong Y-J, Chen H-T (2014) Hydrogen adsorption and storage in heteroatoms (B, N) modified carbon-based materials decorated with alkali metals: a computational study. J Phys Chem C 119:7662–7669

    Article  Google Scholar 

  • Hubner O, Gloss A, Fichtner M, Klopper W (2004) On the interaction of dihydrogen with aromatic systems. J Phys Chem A 108:3019–3023

    Article  Google Scholar 

  • Kim Y, Zhao Y, Williamson A, Heben M, Zhang S (2006) Nondissociative adsorption of H2 molecules in light-element-doped fullerenes. Phys Rev Lett 96:016102

    Article  PubMed  Google Scholar 

  • Lee H, Ihm J, Cohen ML, Louie SG (2010) Calcium-decorated graphene-based nanostructures for hydrogen storage. Nano Lett 10:793–798

    Article  CAS  PubMed  Google Scholar 

  • Lin I-H, Tong Y-J, Hsieh H-J, Huang H-W, Chen H-T (2016) Hydrogen adsorption and storage in boron-substituted and nitrogen-substituted nano-carbon materials decorated with alkaline earth metals. Int J Energy Res 40:230–240

    Article  CAS  Google Scholar 

  • Liu C, Fan YY, Liu M, Cong HT, Cheng HM, Dresselhaus MS (1999) Hydrogen storage in single-walled carbon nanotubes at room temperature. Science 286:1127–1129

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Liang C, Wei Z, Jiang Y, Gao M, Pan H, Wang Q (2010) Hydrogenstorage reaction over a ternary imide Li2Mg2N3H3. Phys Chem Chem Phys 12:3108

    Article  CAS  PubMed  Google Scholar 

  • Mao WL, Koh CA, Sloan ED (2007) Clathrate hydrates under pressure. Phys Today 60:42–47

    Article  CAS  Google Scholar 

  • Monkhorst HJ, Pack JD (1976) Special points for brillouin-zone integrations. Phys Rev B 13:5188–5192

    Article  Google Scholar 

  • Ning GQ, Xu CG, Mu L, Chen GG, Wang G, Gao J, Fan ZG, Qian WH, Wei F (2012) High capacity gas storage in corrugated porous graphene with a specific surface area-lossless tightly stacking manner. Chem Commun 48:6815–6817

    Article  CAS  Google Scholar 

  • Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  PubMed  Google Scholar 

  • Reunchan P, Jhi SH (2011) Metal-dispersed porous graphene for hydrogen storage. Appl Phys Lett 98:093103

    Article  Google Scholar 

  • Rosi NL, Eckert J, Eddaoudi M, Vodak DT, Kim J, O’Keeffe M, Yaghi OM (2003) Hydrogen storage in microporous metal-organic frameworks. Science 300:1127–1129

    Article  CAS  PubMed  Google Scholar 

  • Sankaran M, Viswanathan B (2006) The role of heteroatoms in carbon nanotubes for hydrogen storage. Carbon 44:2816–2821

    Article  CAS  Google Scholar 

  • Sankaran M, Viswanathan B (2007) Hydrogen storage in boron substituted carbon nanotubes. Carbon 45:1628–1635

    Article  CAS  Google Scholar 

  • Sankaran M, Viswanathan B, Srinivasa Murthy S (2008) Boron substituted carbon nanotubes—how appropriate are they for hydrogen storage? Int J Hydrog Energy 33:393–403

    Article  CAS  Google Scholar 

  • Schlapbach L, Zuttel A (2001) Hydrogen-storage materials for mobile applications. Nature 414:353–358

    Article  CAS  PubMed  Google Scholar 

  • Su F, Bray CL, Carter BO, Overend G, Vropper C, Iggo JA, Khimyak YZ, Fogg AM, Cooper AI (2009) Reversible hydrogen storage in hydrogel clathrate hydrates. Adv Mater 21:2382–2386

    Article  CAS  Google Scholar 

  • Tan X, Kou L, Tahini HA, Smith SC (2015) Charge modulation in graphitic carbon nitride as a switchable approach to high-capacity hydrogen storage. ChemsusChem 8:3626–3631

    Article  CAS  PubMed  Google Scholar 

  • Tan X, Tahini HA, Smith SC (2016) Conductive boron-doped graphene as an ideal material for electrocatalytically switchable and high-capacity hydrogen storage. ACS Appl Mater Interfaces 8:32815–32822

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Yang RT (2008) New sorbents for hydrogen storage by hydrogen spillover: a review. Energy Environ Sci 1:268–279

    Article  CAS  Google Scholar 

  • Wang L, Yang RT (2009) Hydrogen storage properties of N-doped microporous carbon. J Phys Chem C 113:21883–21888

    Article  CAS  Google Scholar 

  • Wang L, Yang FH, Yang RT (2009) Hydrogen storage properties of B- and N-doped microporous carbon. AIChE J 55:1823–1833

    Article  CAS  Google Scholar 

  • Winter CJ, Nitsch J (1988) Hydrogen as an energy carrier: technologies, systems, economy, 1st edn. Springer, Berlin

    Book  Google Scholar 

  • Wu X, Gao Y, Zeng XC (2008) Hydrogen storage in pillared li-dispersed boron carbide nanotubes. J Phys Chem C 112:8458–8463

    Article  CAS  Google Scholar 

  • Wu HY, Fan XF, Kuo JL, Deng WQ (2010) Carbon doped boron nitride cages as competitive candidates for hydrogen storage materials. Chem Commun 46:883

    Article  CAS  Google Scholar 

  • Yuan L, Chen Y, Kang L, Zhang C, Wang D, Wang C, Zhang M, Wu X (2017) First-principles investigation of hydrogen storage capacity of Y-decorated porous graphene. Appl Surf Sci 399:463–468

    Article  CAS  Google Scholar 

  • Zhou J, Wang Q, Sun Q, Jena P, Chen XS (2010) Electric field enhanced hydrogen storage on polarizable materials substrates. Proc Natl Acad Sci 107:2801–2806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Ministry of Science and Technology (MOST), Taiwan, under Grant Numbers of MOST 110-2113-M-033-009, MOST 109-2113-M-033-001, MOST 108-2113-M-033-001, and MOST 107-2113-M-033-004, and Chung Yuan Christian University (CYCU) for the financial support and the National Center for High-Performance Computing, Taiwan, for the use of facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsin-Tsung Chen.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chan, CW., Wu, SY. & Chen, HT. The interaction of hydrogen with heteroatoms (B, N)-doped porous graphene: A computational study. Chem. Pap. 76, 1009–1017 (2022). https://doi.org/10.1007/s11696-021-01901-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-021-01901-7

Keywords

Navigation