Skip to main content
Log in

A mini review on chemical fixation of CO2: Absorption and catalytic conversion into cyclic carbonates

  • Review Article
  • Published:
Frontiers of Chemical Engineering in China Aims and scope Submit manuscript

An Erratum to this article was published on 31 March 2010

Abstract

In this article, we present our research results on chemical fixation of CO2 using organobismuth compounds. We fabricated bismuth biphenoate complex, Zn-Mg-Al composite oxides, and SBA-15 or Al-SBA-15 immobilized hydroxyl ionic liquid for CO2 cycloaddition onto epoxides. The hypervalent bismuth compounds show good ability for association and dissociation with CO2. The bismuth biphenolate complexes are catalytically effective for the cycloaddition reaction. The heterogeneous catalysts, viz. Zn-Mg-Al oxides and SBA-15 or Al-SBA-15 immobilized ionic liquid, are efficient for the synthesis of cyclic carbonate from CO2 and epoxide. It is found that the presence of a trace amount of water can improve the catalytic activity of the immobilized ionic liquid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sun J M, Fujita S I, Arai M. Development in the green synthesis of cyclic carbonate from carbon dioxide using ionic liquids. J Orgaomet Chem, 2005, 690: 3490–3497

    Article  CAS  Google Scholar 

  2. Omae I. Aspects of carbon dioxide utilization. Catal Today, 2006, 115: 33–52

    Article  CAS  Google Scholar 

  3. Sakakura T, Choi J C, Yasuda H. Transformation of carbon dioxide. Chem Rev, 2007, 107: 2365–2387

    Article  CAS  Google Scholar 

  4. Sakakura T, Kohno K. The synthesis of organic carbonates from carbon dioxide. Chem Commun, 2009, 1312–1330

  5. Silvestru C. Structural chemistry of bismuth compounds. I. Organobismuth derivatives. Chem Rev, 1999, 99: 3277–3327

    Article  CAS  Google Scholar 

  6. Briand G G, Burford N. Bismuth compounds and preparations with biological or medicinal relevance. Chem Rev, 1999, 99: 2601–2657

    Article  CAS  Google Scholar 

  7. Elliott G I, Konopelski J P. Arylation with organolead and organobismuth reagents. Tetrahedron, 2001, 57: 5683–5705

    Article  CAS  Google Scholar 

  8. Suzuki H, Ogawa T, Komatsu N, Matano Y, Murafuji T, Ikegami T. Organobismuth Chemistry. Amsterdam: Elsevier, 2001

    Google Scholar 

  9. Matano Y, Begum S A, Miyamatsu T, Suzuki H. Synthesis and stereochemical behavior of unsymmetrical tetraarylbismuthonium salts. Organometallics, 1999, 18: 5668–5681

    Article  CAS  Google Scholar 

  10. Matano Y, Nomura H, Suzuki H, Shiro M, H Nakano. Synthesis, structure, and reactions of (acylimino)triaryl-lambda(5)-bismuthanes: First comparative study of the (acylimino)pnictorane series. J Am Chem Soc, 2001, 123: 10954–10965

    Article  CAS  Google Scholar 

  11. Uchiyama Y, Kano N, Kawashima T. Synthesis and structure of a novel ladder-type organobismuth compound with bismuth-oxygen interactions. Organometallics, 2001, 20: 2440–2442

    Article  CAS  Google Scholar 

  12. Matano Y, Nomura H, Suzuki H. Synthesis and structural comparison of triaryl(sulfonylimino) pnictoranes. Inorg Chem, 2002, 41: 1940–1948

    Article  CAS  Google Scholar 

  13. Shimada S, Yamazaki O, Tanaka T, Rao M L N, Suzuki Y, Tanaka M. 5,6,7,12-tetrahydrodibenz[c,f]-[1,5]azabismocines: Highly reactive and recoverable organobismuth reagents for cross-coupling reactions with aryl bromides. Angew Chem Int Ed, 2003, 42: 1845–1848

    Article  CAS  Google Scholar 

  14. Breunig H J, Ghesner I, Ghesner M E, Lork E. Syntheses, structures, and dynamic behavior of chiral racemic organoantimony andbismuth compounds RR’sbCl, RR’BiCl, and RR’sbM [R = 2-(Me2NCH2)C6H4(xx,) R’= CH(Me3Si)2(xx,) M= H, Li, Na(xx]). Inorg Chem, 2003, 42: 1751–1757

    Article  CAS  Google Scholar 

  15. Shimada S, Yamazaki O, Tanaka T, Suzuki Y, Tanaka M. Synthesis and structure of 5,6,7,12-tetrahydrodibenz[c,f]-[1,5]azabismocines. J Organomet Chem, 2004, 689: 3012–3023

    Article  CAS  Google Scholar 

  16. Yin S F, Maruyama J, Yamashita T, Shimada S. Efficient fixation of carbon dioxide by hypervalent organobismuth oxide, hydroxide, and alkoxide. Angew Chem Int Ed, 2008, 47: 6590–6593

    Article  CAS  Google Scholar 

  17. Zhang XW, Xia J, Yan H W, Luo S L, Yin S F, Au C T, Wong W Y. Synthesis, structure, and in vitro antiproliferative activity of cyclic hypervalent organobismuth(III) chlorides and their triphenylgermylpropionate derivatives. J Organomet Chem, 2009, DOI 10.1016/j.jorganchem. 2009.05.003

  18. Yin S F, Dai W L, Li W S, Zhou X P, Shimada S. Synthesis of novel organobismuth complexes bearing a sulfur-bridged biphenolate ligand and their catalytic application to CO2 cycloaddition with propylene epoxide. J Mol Catal (China), 2007, 21: 264–267

    CAS  Google Scholar 

  19. Zhang X W, Yin S F, Wu S S, Dai W L, Li W S, Zhou X P. Organobismuth chemistry in the past decade. Prog Chem, 2008, 20: 878–886 (in Chinese)

    CAS  Google Scholar 

  20. Zhang X W, Dai W L, Yin S F, Luo S L, Au C T. Cationic organobismuth complex as an effective catalyst for conversion of CO2 into cyclic carbonates. Front Environ Sci Engin (China), 2009, 3: 32–37

    Article  Google Scholar 

  21. Yin S F, Dai W L, Luo S L, Wu S S, Zhang X W, Li W S. CN Patent, 101265277, 2008-09-17

  22. Yin S F, Luo S L, Zhang X W, Dai W L. CN Patent, 101264415, 2008-09-17

  23. Yin S F, Shimada S. Synthesis and structure of bismuth compounds bearing a sulfur-bridged bis(phenolato) ligand and their catalytic application to the solvent-free synthesis of propylene carbonate from COn and propylene oxide. Chem Commun, 2009, 1136–1138

  24. Palmer D A, Eldik R V. The chemistry of metal carbonato and carbon dioxide complexes. Chem Rev, 1983, 83: 651–731

    Article  CAS  Google Scholar 

  25. Gibson D H. The organometallic chemistry of carbon dioxide. Chem Rev, 1996, 96: 2063–2095

    Article  CAS  Google Scholar 

  26. Darensbourg D J, Holtcamp M W. Catalysts for the reactions of epoxides and carbon dioxide. Coord Chem Rev, 1996, 153: 155–174

    Article  CAS  Google Scholar 

  27. Leitner W. The coordination chemistry of carbon dioxide and its relevance for catalysis: A critical survey. Coord Chem Rev, 1996, 153: 257–284

    Article  CAS  Google Scholar 

  28. Yamamoto M, Koitabashi M, Kimura H. Effects of chemical changes in electron-reflecting coating of a shadow-mask’s on the life characteristics of the cathode ray tube. Jpn J Appl Phys, 2001, 40: 4691–4695

    Article  CAS  Google Scholar 

  29. Esaka T, Moto-ike K. CO2 absorption and desorption of Bi2O3-La2O3 powders prepared by mechanical synthesis. Mater Res Bull, 2004, 39: 1581–1587

    Article  CAS  Google Scholar 

  30. Breunig H J, Koenigsmann L, Lork E, Nema M, Philipp N, Silvestru C, Soran A, Varga R A, Wagner R. Hypervalent organobismuth(III) carbonate, chalcogenides and halides with the pendant arm ligands 2-(Me2NCH2)C6H4 and 2,6-(Me2NCH2)2C6H3. Dalton Trans, 2008, 1831–1842

  31. Breunig H J, Ebert K H, Schulz R E, Wieber M, Sauer I. Tetramesityldibismuthane, bis(dimesitylbismuth)chalcogenides and bis(dimethylbismuth)chalcogenides. Z Naturforsch B, 1995, 50: 735–744

    CAS  Google Scholar 

  32. Huang J W, Shi M. Chemical Fixation of Carbon Dioxide by NaI/PPh3/PhOH. J Org Chem, 2003, 68: 6705–6709

    Article  CAS  Google Scholar 

  33. Kim H S, Bae J Y, Lee J S, Kwon O S, Jelliarko P, Lee S D, Lee S H. Phosphine-bound zinc halide complexes for the coupling reaction of ethylene oxide and carbon dioxide. J Catal, 2005, 232: 80–84

    Article  CAS  Google Scholar 

  34. Sun J, Wang L, Zhang S J, Li Z X, Zhang X P, Dai W B, Mori R. ZnCl2/phosphonium halide: An efficient Lewis acid/base catalyst for the synthesis of cyclic carbonate. J Mol Catal A, 2006, 256: 295–300

    Article  CAS  Google Scholar 

  35. Kawanami H, Ikushima Y. Chemical fixation of carbon dioxide to styrene carbonate under supercritical conditions with DMF in the absence of any additional catalysts. Chem Commun, 2000, 2089–2090

  36. Barbarini A, Maggi R, Mazzacani A, Mori G, Sartori G, Sartorio R. Cycloaddition of CO2 to epoxides over both homogeneous and silica-supported guanidine catalysts. Tetrahedron Lett, 2003, 44: 2931–2934

    Article  CAS  Google Scholar 

  37. Jiang J L, Hua R M. Efficient DMF-catalyzed coupling of epoxides with CO2 under solvent-free conditions to afford cyclic carbonates. Synth Commun, 2006, 36: 3141–3148

    Article  CAS  Google Scholar 

  38. Câló V, Nacci A, Monopoli A, Fanizzi A. Cyclic carbonate formation from carbon dioxide and oxiranes in tetrabutylammonium halides as solvents and catalysts. Org Lett, 2002, 4: 2561–2563

    Article  Google Scholar 

  39. Koseva K, Koseva N, Troev K. Calcium chloride as co-catalyst of onium halides in the cycloaddition of carbon dioxide to oxiranes. J Mol Catal A, 2003, 194: 29–37

    Article  Google Scholar 

  40. Peng J J, Deng Y Q. Cycloaddition of carbon dioxide to propylene oxide catalyzed by ionic liquids. New J Chem, 2001, 25: 639–641

    Article  CAS  Google Scholar 

  41. He L N, Yasuda H, Sakakura T. New procedure for recycling homogeneous catalyst: propylene carbonate synthesis under supercritical CO2 conditions. Green Chem, 2003, 5: 92–94

    Article  CAS  Google Scholar 

  42. Kim H S, Kim J J, Kim H, Jang H G. Imidazolium zinc tetrahalide-catalyzed coupling reaction of CO2 and ethylene oxide or propylene oxide. J Catal, 2003, 220: 44–46

    Article  CAS  Google Scholar 

  43. Kawanami H, Sasaki A, Matsui K, Ikushima Y. A rapid and effective synthesis of propylene carbonate using a supercritical CO2-ionic liquid system. Chem Commun, 2003, 896–897

  44. Paddock R L, Nguyen S T. Chemical CO2 fixation: Cr(III) salen complexes as highly efficient catalysts for the coupling of CO2 and epoxides. J Am Chem Soc, 2001, 123: 11498–11499

    Article  CAS  Google Scholar 

  45. Shen Y M, Duan W L, Shi M. Chemical fixation of carbon dioxide catalyzed by binaphthyldiamino Zn, Cu, and Co salen-type complexes. J Org Chem, 2003, 68: 1559–1562

    Article  CAS  Google Scholar 

  46. Lu X B, Liang B, Zhang Y J, Tian Y Z, Wang Y M, Bai C X, Wang H, Zhang R. Asymmetric catalysis with CO2: Direct synthesis of optically active propylene carbonate from racemic epoxides. J Am Chem Soc, 2004, 126: 3732–3733

    Article  CAS  Google Scholar 

  47. Lu X B, Zhang Y J, Liang B, Li X, Wang H. Chemical fixation of carbon dioxide to cyclic carbonates under extremely mild conditions with highly active bifunctional catalysts. J Mol Catal A, 2004, 210: 31–34

    Article  CAS  Google Scholar 

  48. Lu X B, Zhang Y J, Jin K, Luo L M, Wang H. Highly active electrophile-nucleophile catalyst system for the cycloaddition of CO2 to epoxides at ambient temperature. J Catal, 2004, 227: 537–541

    Article  CAS  Google Scholar 

  49. Darensbourg D J, Fang C C, Rodgers J L. Catalytic coupling of carbon dioxide and 2,3-epoxy-1,2,3,4-tetrahydronaphthalene in the presence of a (Salen)(CrCl)-Cl-III derivative. Organometallics, 2004, 23: 924–927

    Article  CAS  Google Scholar 

  50. Jing H W, Chang T, Jin L L, Wu M, Qiu W Y. Ruthenium salen/phenyltrimethylammonium tribromide catalyzed coupling reaction of carbon dioxide and epoxides. Catal Commun, 2007, 8: 1630–1634

    Article  CAS  Google Scholar 

  51. Chen SW, Kawthekar R B, Kim G J. Efficient catalytic synthesis of optically active cyclic carbonates via coupling reaction of epoxides and carbon dioxide. Tetrahedron Lett, 2007, 48: 297–300

    Article  CAS  Google Scholar 

  52. Jutz F, Grunwaldt J D, Baiker A. Mn(III)(salen)-catalyzed synthesis of cyclic organic carbonates from propylene and styrene oxide in “supercritical” CO2. J Mol Catal A, 2008, 279: 94–103

    Article  CAS  Google Scholar 

  53. Paddock R L, Hiyama Y, Mckay J M, Nguyen S T. Co(III) porphyrin/DMAP: An efficient catalyst system for the synthesis of cyclic carbonates from CO2 and epoxides. Tetrahedron Lett, 2004, 45: 2023–2026

    Article  CAS  Google Scholar 

  54. Srivastava R, Bennur T H, Srinivas D. Factors affecting activation and utilization of carbon dioxide in cyclic carbonates synthesis over Cu and Mn peraza macrocyclic complexes. J Mol Catal A, 2005, 226: 199–205

    Article  CAS  Google Scholar 

  55. Jin L L, Jing H W, Chang T, Bu X L, Wang L, Liu Z L. Metal porphyrin/ phenyltrimethylammonium tribromide: High efficient catalysts for coupling reaction of CO2 and epoxides. J Mol Catal A, 2007, 261: 262–266

    Article  CAS  Google Scholar 

  56. Li FW, Xia C G, Xu L W, Sun W, Chen G X. A novel and effective Ni complex catalyst system for the coupling reactions of carbon dioxide and epoxides. Chem Commun, 2003, 2042–2043

  57. Jiang J L, Gao F X, Hua R M, Qiu X Q. Re(CO)5Br-catalyzed coupling of epoxides with CO2 affording cyclic carbonates under solvent-free conditions. J Org Chem, 2005, 70: 381–383

    Article  CAS  Google Scholar 

  58. Bu Z W, Qin G, Cao S K. A ruthenium complex exhibiting high catalytic efficiency for the formation of propylene carbonate from carbon dioxide. J Mol Catal A, 2007, 277: 35–39

    Article  CAS  Google Scholar 

  59. Bhanage BM, Fujita S I, Ikushima Y, Arai M. Synthesis of dimethyl carbonate and glycols from carbon dioxide, epoxides, and methanol using heterogeneous basic metal oxide catalysts with high activity and selectivity. Appl Catal A, 2001, 219: 259–266

    Article  CAS  Google Scholar 

  60. Yano T, Matsui H, Koike T, Ishiguro H, Fujihara H, Yoshihara M, Maeshima T. Magnesium oxide-catalysed reaction of carbon dioxide with an epoxide with retention of stereochemistry. Chem Commum, 1997, 1129–1130

  61. Aresta M, Dibenedetto A, Gianfrate L, Pastore C. Nb(V) compounds as epoxides carboxylation catalysts: the role of the solvent. J Mol Catal A, 2003, 204-205: 245–252

    Article  CAS  Google Scholar 

  62. Yamaguchi K, Ebitani K, Yoshida T, Yoshida H, Kaneda K. Mg-Al mixed oxides as highly active acid-base catalysts for cycloaddition of carbon dioxide to epoxides. J Am Chem Soc, 1999, 121: 4526–4527

    Article  CAS  Google Scholar 

  63. Ramin M, Van Vegten N, Grunwaldt J D, Baiker A. Simple preparation routes towards novel Zn-based catalysts for the solventless synthesis of propylene carbonate using dense carbon dioxide. J Mol Catal A, 2006, 258: 165–171

    Article  CAS  Google Scholar 

  64. Yasuda H, He L N, Takahashi T, Sakakura T. Non-halogen catalysts for propylene carbonate synthesis from CO2 under supercritical conditions. Appl Catal A, 2006, 298: 177–180

    Article  CAS  Google Scholar 

  65. Doskocil E J, Bordawekar S V, Kaye B G, Davis R J. UV-vis spectroscopy of iodine adsorbed on alkali-metal-modified zeolite catalysts for addition of carbon dioxide to ethylene oxide. J Phys Chem B, 1999, 103: 6277–6282

    Article  CAS  Google Scholar 

  66. Davis R J, Doskocil E J, Bordawekar S. Structure/function relationships for basic zeolite catalysts containing occluded alkali species. Catal Today, 2000, 62: 241–247

    Article  CAS  Google Scholar 

  67. Tu M, Davis R J. Cycloaddition of CO2 to epoxides over solid base catalysts. J Catal, 2001, 199: 85–91

    Article  CAS  Google Scholar 

  68. Doskocil E J. Ion-exchanged ETS-10 catalysts for the cycloaddition of carbon dioxide to propylene oxide. Microporous Mesoporous Mater, 2004, 76: 177–183

    Article  CAS  Google Scholar 

  69. Doskocil E J. Effect of water and alkali modifications on ETS-10 for the cycloaddition of CO2 to propylene oxide. J Phys Chem B, 2005, 109: 2315–2320

    Article  CAS  Google Scholar 

  70. Srivastava R, Srinivas D, Ratnasamy P. CO2 activation and synthesis of cyclic carbonates and alkyl/aryl carbamates over adenine-modified Ti-SBA-15 solid catalysts. J Catal, 2005, 233: 1–15

    Article  CAS  Google Scholar 

  71. Zhang X H, Zhao N, Wei W, Sun Y H. Chemical fixation of carbon dioxide to propylene carbonate over amine-functionalized silica catalysts. Catal Today, 2006, 115: 102–106

    Article  CAS  Google Scholar 

  72. Baleizâo C, Gigante B, Sabater M J, García H, Corma A. On the activity of chiral chromium salen complexes covalently bound to solid silicates for the enantioselective epoxide ring opening. Appl Catal A, 2002, 228: 279–288

    Article  Google Scholar 

  73. Alvaro M, Baleizao C, Das D, Carbonell E, García H. CO2 fixation using recoverable chromium salen catalysts: use of ionic liquids as cosolvent or high-surface-area silicates as supports. J Catal, 2004, 228: 254–258

    Article  CAS  Google Scholar 

  74. Ramin M, Jutz F, Grunwaldt J D, Baiker A. Solventless synthesis of propylene carbonate catalysed by chromium-salen complexes: Bridging homogeneous and heterogeneous catalysis. J Mol Catal A, 2005, 242: 32–39

    Article  CAS  Google Scholar 

  75. Xiao L F, Li F W, Peng J J, Xia C G. Immobilized ionic liquid/zinc chloride: Heterogeneous catalyst for synthesis of cyclic carbonates from carbon dioxide and epoxides. J Mol Catal A, 2006, 253: 265–269

    Article  CAS  Google Scholar 

  76. Wang J Q, Kong D L, Chen J Y, Cai F, He L N. Synthesis of cyclic carbonates from epoxides and carbon dioxide over silica-supported quaternary ammonium salts under supercritical conditions. J Mol Catal A, 2006, 249: 143–148

    Article  CAS  Google Scholar 

  77. Wang J Q, Yue X D, Cai F, He L N. Solventless synthesis of cyclic carbonates from carbon dioxide and epoxides catalyzed by silica-supported ionic liquids under supercritical conditions. Catal Commun, 2007, 8: 167–172

    Article  CAS  Google Scholar 

  78. Nomura R, Kimura M, Teshima S, Ninagawa A, Matsuda H. Direct synthesis of cyclic carbonates in the presence of organometallic compounds. Catalyses by systems from IVA, VA, and VIA group compounds and Lewis base. Bull Chem Soc Jpn, 1982, 55: 3200–3203

    Article  CAS  Google Scholar 

  79. Wu S S, Zhang X W, Dai W L, Yin S F, Li W S, Ren Y Q, Au C T. ZnBr2-Ph4PI as highly efficient catalyst for cyclic carbonates synthesis from terminal epoxides and carbon dioxide. Appl Catal A, 2008, 341: 106–111

    Article  CAS  Google Scholar 

  80. Sankar M, Tarte N H, Manikandan P. Effective catalytic system of zinc-substituted polyoxometalate for cycloaddition of CO2 to epoxides. Appl Catal A, 2004, 276: 217–222

    Article  CAS  Google Scholar 

  81. Mori K, Mitani Y, Hara T, Mizugaki T, Ebitani K, Kaneda K. A single-site hydroxyapatite-bound zinc catalyst for highly efficient chemical fixation of carbon dioxide with epoxides. Chem Commun, 2005, 3331–3333

  82. Yin S F, Dai WL, Luo S L, Wu S S, Zhang XW, Li WS. CN Patent, 101265253, 2008-09-17

  83. Zhao Y, Tian J S, Qi X H, Han Z N, Zhuang Y Y, He L N. Quaternary ammonium salt-functionalized chitosan: An easily recyclable catalyst for efficient synthesis of cyclic carbonates from epoxides and carbon dioxide. J Mol Catal A, 2007, 271: 284–289

    Article  CAS  Google Scholar 

  84. Takahashi T, Watahiki T, Kitazume S, Yasuda H, Sakakura T. Synergistic hybrid catalyst for cyclic carbonate synthesis: Remark-8 Front. Chem. Eng. China able acceleration caused by immobilization of homogeneous catalyst on silica. Chem Commun, 2006, 1664–1666

  85. Sakai T, Tsutsumi Y, Ema T. Highly active and robust organicinorganic hydrid catalyst for the synthesis of cyclic carbonates from carbon dioxide and epoxides. Green Chem, 2008, 10: 337–341

    Article  CAS  Google Scholar 

  86. Xie Y, Zhang Z F, Jiang T, He J L, Han B X, Wu T B, Ding K L. CO2 cycloaddition reactions catalyzed by an ionic liquid grafted onto a highly cross-linked polymer matrix. Angew Chem Int Ed, 2007, 46: 7255–7258

    Article  CAS  Google Scholar 

  87. Zhu A L, Jiang T. Han B X, Zhang J C, Xie Y, Ma X M. Supported choline chloride/urea as a heterogeneous catalyst for chemical fixation of carbon dioxide to cyclic carbonates. Green Chem, 2007, 9: 169–172

    Article  CAS  Google Scholar 

  88. Udayakumar S, Park S W, Park D W, Choi B S. Immobilization of ionic liquid on hybrid MCM-41 system for the chemical fixation of carbon dioxide on cyclic carbonate. Catal Commun, 2008, 9: 1563–1570

    Article  CAS  Google Scholar 

  89. Sun J, Zhang S J, Cheng W G, Ren J Y. Hydroxyl-functionalized ionic liquid: a novel efficient catalyst for chemical fixation of CO2 to cyclic carbonate. Tetrahedron Lett, 2008, 49: 3588–3591

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuangfeng Yin or Chaktong Au.

Additional information

Chaktong au is Professor of Department of Chemistry, the Hong Kong Baptist University (HKBU). He was born in Hong Kong. In 1974, he went to study chemistry in the University of Liverpool, UK. and received B.Sc. degree in 1977. He furthered his study in the University of Bradford, UK and received Ph.D. in 1981. From 1980 to 1986, he did research in the University College, Cardiff, Wales. In 1986, he joined the Department of Chemistry, Xiamen University, China as associate professor and was promoted to professor in 1987. From 1990 to present, he worked as lecturer and later full professor in the Department of Chemistry, HKBU. Prof. Au’s main research interest is heterogeneous catalysis and novel materials and he has published over 200 research papers in international journals. In 2003, he was awarded D.Sc. degree by the University of Liverpool in recognition of his contributions in the field of surface science and heterogeneous catalysis. At present, he serves as associate editor of the Elsevier journal Applied Catalysis A: General.

Shuangfeng Yin is Professor of College of Chemistry and Chemical Engineering, Hunan University. He was born in Hunan Province, China. He went to study in Beijing University of Chemical Technology and received B.Sc. degree in 1996. Then he moved to Research Institute of Petroleum Processing and got his Master Degree in 1999. He furthered his study in Tsinghua University and received Ph.D. in 2003. He had postdoctoral research in HK with Professor Au from 2002 to 2004. From 2004 to present, he worked as lecturer and later full professor (2006) in the College of Chemistry and Chemical Engineering, Hunan University. From 2004 to 2006, he visited Japan as a JSPS fellow. Prof. Yin’s main research interest includes organometallic chemistry, CO2 chemistry, catalysis, new energy, and novel materials and he has published over 50 research papers.

An erratum to this article is available at http://dx.doi.org/10.1007/s11705-009-0600-z.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dai, W., Luo, S., Yin, S. et al. A mini review on chemical fixation of CO2: Absorption and catalytic conversion into cyclic carbonates. Front. Chem. Eng. China 4, 163–171 (2010). https://doi.org/10.1007/s11705-009-0235-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-009-0235-0

Keywords

Navigation