Skip to main content
Log in

Surface-tailoring chlorine resistant materials and strategies for polyamide thin film composite reverse osmosis membranes

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Polyamide thin film composite membranes have dominated current reverse osmosis market on account of their excellent separation performances compared to the integrally skinned counterparts. Despite their very promising separation performance, chlorine-induced degradation resulted from the susceptibility of polyamide toward chlorine attack has been regarded as the Achilles’s heel of polyamide thin film composite. The free chlorine species present during chlorine treatment can impair membrane performance through chlorination and depolymerization of the polyamide selective layer. From material point of view, a chemically stable membrane is crucial for the sustainable application of membrane separation process as it warrants a longer membrane lifespan and reduces the cost involved in membrane replacement. Various strategies, particularly those involved membrane material optimization and surface modifications, have been established to address this issue. This review discusses membrane degradation by free chlorine attack and its correlation with the surface chemistry of polyamide. The advancement in the development of chlorine resistant polyamide thin film composite membranes is reviewed based on the state-of-the-art surface modifications and tailoring approaches which include the in situ and post-fabrication membrane modifications using a broad range of functional materials. The challenges and future directions in this field are also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bain R, Johnston R, Slaymaker T. Drinking water quality and the SDGs. NPJ Clean Water, 2020, 3(1): 37

    Article  CAS  Google Scholar 

  2. Kirschke S, Barrington D, Tingey-holyoak J. Decade of action on SDG 6. One Earth, 2020, 2(3): 199–200

    Article  Google Scholar 

  3. Qi H, Zeng S, Shi L, Dong X. What the reclaimed water use can change: from a perspective of inter-provincial virtual water network. Journal of Environmental Management, 2021, 287: 112350

    Article  PubMed  Google Scholar 

  4. Hristov J, Barreiro-Hurle J, Salputra G, Blanco M, Witzke P. Reuse of treated water in European agriculture: potential to address water scarcity under climate change. Agricultural Water Management, 2021, 251: 106872

    Article  PubMed  PubMed Central  Google Scholar 

  5. Skuse C, Gallego-Schmid A, Azapagic A, Gorgojo P. Can emerging membrane-based desalination technologies replace reverse osmosis?. Desalination, 2021, 500: 114844

    Article  CAS  Google Scholar 

  6. Qasim M, Badrelzaman M, Darwish N N, Darwish N A, Hilal N. Reverse osmosis desalination: a state-of-the-art review. Desalination, 2019, 459: 59–104

    Article  CAS  Google Scholar 

  7. Wenten I G, Khoiruddin. Reverse osmosis applications: prospect and challenges. Desalination, 2016, 391: 112–125

    Article  CAS  Google Scholar 

  8. Obotey Ezugbe E, Rathilal S. Membrane technologies in waste-water treatment: a review. Membranes, 2020, 10(5): 89

    Article  PubMed Central  Google Scholar 

  9. Yang Z, Zhou Y, Feng Z, Rui X, Zhang T, Zhang Z. A review on reverse osmosis and nanofiltration membranes for water purification. Polymers, 2019, 11(8): 1–22

    Article  Google Scholar 

  10. Zhao S, Liao Z, Fane A, Li J, Tang C, Zheng C, Lin J, Kong L. Engineering antifouling reverse osmosis membranes: a review. Desalination, 2021, 499: 114857

    Article  CAS  Google Scholar 

  11. Khanzada N K, Farid M U, Kharraz J A, Choi J, Tang C Y, Nghiem L D, Jang A, An A K. Removal of organic micropollutants using advanced membrane-based water and wastewater treatment: a review. Journal of Membrane Science, 2020, 598: 117672

    Article  CAS  Google Scholar 

  12. Park K, Kim J, Yang D R, Hong S. Towards a low-energy seawater reverse osmosis desalination plant: a review and theoretical analysis for future directions. Journal of Membrane Science, 2020, 595: 117607

    Article  CAS  Google Scholar 

  13. Seah M Q, Lau W J, Goh P S, Tseng H H, Wahab R A, Ismail A F. Progress of interfacial iolymerization techniques for polyamide thin film (nano)composite membrane fabrication: a comprehensive review. Polymers, 2020, 12(12): 2817

    Article  CAS  PubMed Central  Google Scholar 

  14. Dai R, Li J, Wang Z. Constructing interlayer to tailor structure and performance of thin-film composite polyamide membranes: a review. Advances in Colloid and Interface Science, 2020, 282: 2–17

    Article  Google Scholar 

  15. Zhao D L, Japip S, Zhang Y, Weber M, Maletzko C, Chung T S. Emerging thin-film nanocomposite (TFN) membranes for reverse osmosis: a review. Water Research, 2020, 173: 115557

    Article  CAS  PubMed  Google Scholar 

  16. Li J, Wei M, Wang Y. Substrate matters: the influences of substrate layers on the performances of thin-film composite reverse osmosis membranes. Chinese Journal of Chemical Engineering, 2017, 25(11): 1676–1684

    Article  Google Scholar 

  17. Karami P, Khorshidi B, McGregor M, Peichel J T, Soares J B P, Sadrzadeh M. Thermally stable thin film composite polymeric membranes for water treatment: a review. Journal of Cleaner Production, 2020, 250: 119447

    Article  CAS  Google Scholar 

  18. Ismail A F, Padaki M, Hilal N, Matsuura T, Lau W J. Thin film composite membrane—recent development and future potential. Desalination, 2015, 356: 140–148

    Article  CAS  Google Scholar 

  19. Habib S, Weinman S T. A review on the synthesis of fully aromatic polyamide reverse osmosis membranes. Desalination, 2021, 502: 114939

    Article  CAS  Google Scholar 

  20. Otitoju T A, Saari R A, Ahmad A L. Progress in the modification of reverse osmosis (RO) membranes for enhanced performance. Journal of Industrial and Engineering Chemistry, 2018, 67: 52–71

    Article  CAS  Google Scholar 

  21. Yu Y, Lee S, Hong S. Effect of solution chemistry on organic fouling of reverse osmosis membranes in seawater desalination. Journal of Membrane Science, 2010, 351(1–2): 205–213

    Article  CAS  Google Scholar 

  22. Bagheri M, Mirbagheri S A. Critical review of fouling mitigation strategies in membrane bioreactors treating water and wastewater. Bioresource Technology, 2018, 258: 318–334

    Article  CAS  PubMed  Google Scholar 

  23. Jiang S, Li Y, Ladewig B P B P. A review of reverse osmosis membrane fouling and control strategies. Science of the Total Environment, 2017, 595: 567–583

    Article  CAS  Google Scholar 

  24. Al-Juboori R A, Yusaf T. Biofouling in RO system: mechanisms, monitoring and controlling. Desalination, 2012, 302: 1–23

    Article  CAS  Google Scholar 

  25. Nunes S P. Can fouling in membranes be ever defeated? Current Opinion in Chemical Engineering, 2020, 28: 90–95

    Article  Google Scholar 

  26. Goh P S, Lau W J, Othman M H D, Ismail A F. Membrane fouling in desalination and its mitigation strategies. Desalination, 2018, 425: 130–155

    Article  CAS  Google Scholar 

  27. Kavitha J, Rajalakshmi M, Phani A R, Padaki M. Pretreatment processes for seawater reverse osmosis desalination systems—a review. Journal of Water Process Engineering, 2019, 32: 100926

    Article  Google Scholar 

  28. Yu W, Song D, Chen W, Yang H. Antiscalants in RO membrane scaling control. Water Research, 2020, 183: 115985

    Article  CAS  PubMed  Google Scholar 

  29. Cai Y H, Galili N, Gelman Y, Herzberg M, Gilron J. Evaluating the impact of pretreatment processes on fouling of reverse osmosis membrane by secondary wastewater. Journal of Membrane Science, 2021, 623: 119054

    Article  CAS  Google Scholar 

  30. Winters H. Twenty years experience in seawater reverse osmosis and how chemicals in pretreatment affect fouling of membranes. Desalination, 1997, 110(1–2): 93–96

    Article  CAS  Google Scholar 

  31. Stoica I M, Vitzilaiou E, Lyng Rüder H, Burmølle M, Thaysen D, Knøchel S, van den Berg F. Biofouling on RO-membranes used for water recovery in the dairy industry. Journal of Water Process Engineering, 2018, 24: 1–10

    Article  Google Scholar 

  32. Flemming H C. Biofouling and me: my Stockholm syndrome with biofilms. Water Research, 2020, 173: 115576

    Article  CAS  PubMed  Google Scholar 

  33. Fujioka T, Ngo M T T, Boivin S, Kawahara K, Takada A, Nakamura Y, Yoshikawa H. Controlling biofouling and disinfection by-product formation during reverse osmosis treatment for seawater desalination. Desalination, 2020, 488: 114507

    Article  CAS  Google Scholar 

  34. Yu J, Baek Y, Yoon H, Yoon J. New disinfectant to control biofouling of polyamide reverse osmosis membrane. Journal of Membrane Science, 2013, 427: 30–36

    Article  CAS  Google Scholar 

  35. Al-Abri M, Al-Ghafri B, Bora T, Dobretsov S, Dutta J, Castelletto S, Rosa L, Boretti A. Chlorination disadvantages and alternative routes for biofouling control in reverse osmosis desalination. npj Clean Water, 2019, 2(1): 2

    Article  CAS  Google Scholar 

  36. Wang Y H, Wu Y H, Tong X, Yu T, Peng L, Bai Y, Zhao X H, Huo Z Y, Ikuno N, Hu H Y. Chlorine disinfection significantly aggravated the biofouling of reverse osmosis membrane used for municipal wastewater reclamation. Water Research, 2019, 154: 246–257

    Article  CAS  PubMed  Google Scholar 

  37. Lequette K, Ait-Mouheb N, Adam N, Muffat-Jeandet M, Bru-Adan V, Wéry N. Effects of the chlorination and pressure flushing of drippers fed by reclaimed wastewater on biofouling. Science of the Total Environment, 2021, 758: 143598

    Article  CAS  Google Scholar 

  38. Yao Y, Zhang X. Chlorine resistant reverse osmosis membrane: a call for reform of desalination treatment processes. Desalination, 2021, 501: 114907

    Article  CAS  Google Scholar 

  39. Glater J, Hong S, Elimelech M. The search for a chlorine-resistant reverse osmosis membrane. Desalination, 1994, 95(3): 325–345

    Article  CAS  Google Scholar 

  40. Xu J, Wang Z, Yu L, Wang J, Wang S. A novel reverse osmosis membrane with regenerable anti-biofouling and chlorine resistant properties. Journal of Membrane Science, 2013, 435: 80–91

    Article  CAS  Google Scholar 

  41. Chesters S P, Pena N, Gallego S, Fazel M, Armstrong M W, del Vigo F. Results from 99 seawater RO membrane autopsies. IDA Journal of Desalination and Water Reuse, 2013, 5(1): 40–47

    Article  CAS  Google Scholar 

  42. Landaburu-Aguirre J, García-Pacheco R, Molina S, Rodríguez-Sáez L, Rabadán J, García-Calvo E. Fouling prevention, preparing for re-use and membrane recycling. Towards circular economy in RO desalination. Desalination, 2016, 393: 16–30

    Article  CAS  Google Scholar 

  43. Tessaro I C, da Silva J B A, Wada K. Investigation of some aspects related to the degradation of polyamide membranes: aqueous chlorine oxidation catalyzed by aluminum and sodium laurel sulfate oxidation during cleaning. Desalination, 2005, 181(1–3): 275–282

    Article  CAS  Google Scholar 

  44. Kim M, Kim M, Park B, Kim S. Changes in characteristics of polyamide reverse osmosis membrane due to chlorine attack. Desalination and Water Treatment, 2015, 54(4–5): 923–928

    Article  CAS  Google Scholar 

  45. Hong S P, Kim I C, Tak T, Kwon Y N. Interfacially synthesized chlorine-resistant polyimide thin film composite (TFC) reverse osmosis (RO) membranes. Desalination, 2013, 309: 18–26

    Article  CAS  Google Scholar 

  46. Kwon Y N, Leckie J O. Hypochlorite degradation of crosslinked polyamide membranes. I. Changes in chemical/morphological properties. Journal of Membrane Science, 2006, 283(1–2): 21–26

    Article  CAS  Google Scholar 

  47. Do V T, Tang C Y, Reinhard M, Leckie J O. Effects of chlorine exposure conditions on physiochemical properties and performance of a polyamide membrane-mechanisms and implications. Environmental Science & Technology, 2012, 46(24): 13184–13192

    Article  CAS  Google Scholar 

  48. Lee J H, Chung J Y, Chan E P, Stafford C M. Correlating chlorine-induced changes in mechanical properties to performance in polyamide-based thin film composite membranes. Journal of Membrane Science, 2013, 433: 72–79

    Article  CAS  Google Scholar 

  49. Soice N P, Greenberg A R, Krantz W B, Norman A D. Studies of oxidative degradation in polyamide RO membrane barrier layers using pendant drop mechanical analysis. Journal of Membrane Science, 2004, 243(1–2): 345–355

    Article  CAS  Google Scholar 

  50. Wei X, Wang Z, Zhang Z, Wang J, Wang S. Surface modification of commercial aromatic polyamide reverse osmosis membranes by graft polymerization of 3-allyl-5,5-dimethylhydantoin. Journal of Membrane Science, 2010, 351(1–2): 222–233

    Article  CAS  Google Scholar 

  51. Gai W, Zhang Y, Zhao Q, Chung T S. Highly permeable thin film composite hollow fiber membranes for brackish water desalination by incorporating amino functionalized carbon quantum dots and hypochlorite treatment. Journal of Membrane Science, 2021, 620: 118952

    Article  CAS  Google Scholar 

  52. Verbeke R, Gómez V, Vankelecom I F J. Chlorine-resistance of reverse osmosis (RO) polyamide membranes. Progress in Polymer Science, 2017, 72: 1–15

    Article  CAS  Google Scholar 

  53. Gohil J M, Ray P. A review on semi-aromatic polyamide TFC membranes prepared by interfacial polymerization: potential for water treatment and desalination. Separation and Purification Technology, 2017, 181: 159–182

    Article  CAS  Google Scholar 

  54. Asadollahi M, Bastani D, Musavi S A. Enhancement of surface properties and performance of reverse osmosis membranes after surface modification: a review. Desalination, 2017, 420: 330–383

    Article  CAS  Google Scholar 

  55. Cran M J, Bigger S W, Gray S R. Degradation of polyamide reverse osmosis membranes in the presence of chloramine. Desalination, 2011, 283: 58–63

    Article  CAS  Google Scholar 

  56. Verbeke R, Bergmaier A, Eschbaumer S, Gómez V, Dollinger G, Vankelecom I. Elemental depth profiling of chlorinated polyamide-based thin-film composite membranes with elastic recoil detection. Environmental Science & Technology, 2019, 53(15): 8640–8648

    Article  CAS  Google Scholar 

  57. Stolov M, Freger V. Degradation of polyamide membranes exposed to chlorine: an impedance spectroscopy study. Environmental Science & Technology, 2019, 53(5): 2618–2625

    Article  CAS  Google Scholar 

  58. Verbeke R, Gómez V, Koschine T, Eyley S, Szymczyk A, Dickmann M, Stimpel-Lindner T, Egger W, Thielemans W, Vankelecom I F J. Real-scale chlorination at pH4 of BW30 TFC membranes and their physicochemical characterization. Journal of Membrane Science, 2018, 551: 123–135

    Article  CAS  Google Scholar 

  59. Surawanvijit S, Rahardianto A, Cohen Y. An Integrated approach for characterization of polyamide reverse osmosis membrane degradation due to exposure to free chlorine. Journal of Membrane Science, 2016, 510: 164–173

    Article  CAS  Google Scholar 

  60. Nakagawara S, Goto T, Nara M, Ozawa Y, Hotta K, Arata Y. Spectroscopic characterization and the pH dependence of bactericidal activity of the aqueous chlorine solution. Analytical Sciences, 1998, 14(4): 691–698

    Article  CAS  Google Scholar 

  61. Liu C, Wang W, Yang B, Xiao K, Zhao H. Separation, anti-fouling, and chlorine resistance of the polyamide reverse osmosis membrane: from mechanisms to mitigation strategies. Water Research, 2021, 195: 116976

    Article  CAS  PubMed  Google Scholar 

  62. Zhao Y, Dai L, Zhang Q, Zhou S, Zhang S. Chlorine-resistant sulfochlorinated and sulfonated polysulfone for reverse osmosis membranes by coating method. Journal of Colloid and Interface Science, 2019, 541: 434–443

    Article  CAS  PubMed  Google Scholar 

  63. Ling R, Shao J, Chen J P, Reinhard M. Iron catalyzed degradation of an aromatic polyamide reverse osmosis membrane by free chlorine. Journal of Membrane Science, 2019, 577: 205–211

    Article  CAS  Google Scholar 

  64. Wu J, Wang Z, Wang Y, Yan W, Wang J, Wang S. Polyvinylamine-grafted polyamide reverse osmosis membrane with improved antifouling property. Journal of Membrane Science, 2015, 495: 1–13

    Article  CAS  Google Scholar 

  65. Ettori A, Gaudichet-Maurin E, Aimar P, Causserand C. Pilot scale study of chlorination-induced transport property changes of a seawater reverse osmosis membrane. Desalination, 2013, 311: 24–30

    Article  CAS  Google Scholar 

  66. Wu D, Martin J, Du J R, Zhang Y, Lawless D, Feng X. Effects of chlorine exposure on nanofiltration performance of polyamide membranes. Journal of Membrane Science, 2015, 487: 256–270

    Article  CAS  Google Scholar 

  67. Kawaguchi T, Tamura H. Chlorine-resistant membrane for reverse osmosis. I. Correlation between chemical structures and chlorine resistance of polyamides. Journal of Applied Polymer Science, 1984, 29(11): 3359–3367

    Article  CAS  Google Scholar 

  68. Avlonitis S, Hanbury W T, Hodgkiess T. Chlorine degradation of aromatic polyamides. Desalination, 1992, 85(3): 321–334

    Article  CAS  Google Scholar 

  69. Liu S, Wu C, Hou X, She J, Liu S, Lu X, Zhang H, Gray S. Understanding the chlorination mechanism and the chlorine-induced separation performance evolution of polypiperazineamide nanofiltration membrane. Journal of Membrane Science, 2019, 573: 36–45

    Article  CAS  Google Scholar 

  70. Barassi G, Borrmann T. N-chlorination and Orton rearrangement of aromatic polyamides, revisited. Journal of Membrane Science & Technology, 2012, 02(02): 2–4

    Article  Google Scholar 

  71. Powell J, Luh J, Coronell O. Amide link scission in the polyamide active layers of thin-film composite membranes upon exposure to free chlorine: Kinetics and mechanisms. Environmental Science & Technology, 2015, 49(20): 12136–12144

    Article  CAS  Google Scholar 

  72. Do V T, Tang C Y, Reinhard M, Leckie J O. Degradation of polyamide nanofiltration and reverse osmosis membranes by hypochlorite. Environmental Science & Technology, 2012, 46(2): 852–859

    Article  CAS  Google Scholar 

  73. Xu J, Wang Z, Wei X, Yang S, Wang J, Wang S. The chlorination process of crosslinked aromatic polyamide reverse osmosis membrane: new insights from the study of self-made membrane. Desalination, 2013, 313: 145–155

    Article  CAS  Google Scholar 

  74. Valentino L, Renkens T, Maugin T, Croué J P, Mariñas B J. Changes in physicochemical and transport properties of a reverse osmosis membrane exposed to chloraminated seawater. Environmental Science & Technology, 2015, 49(4): 2301–2309

    Article  CAS  Google Scholar 

  75. Singh R. Polyamide polymer solution behaviour under chlorination conditions. Journal of Membrane Science, 1994, 88(2–3): 285–287

    Article  CAS  Google Scholar 

  76. García-Pacheco R, Landaburu-Aguirre J, Lejarazu-Larrañaga A, Rodríguez-Sáez L, Molina S, Ransome T, García-Calvo E. Free chlorine exposure dose (ppm·h) and its impact on RO membranes ageing and recycling potential. Desalination, 2019, 457: 133–143

    Article  Google Scholar 

  77. Lawler W, Bradford-Hartke Z, Cran M J, Duke M, Leslie G, Ladewig B P, Le-Clech P. Towards new opportunities for reuse, recycling and disposal of used reverse osmosis membranes. Desalination, 2012, 299: 103–112

    Article  CAS  Google Scholar 

  78. Donose B C, Sukumar S, Pidou M, Poussade Y, Keller J, Gernjak W. Effect of pH on the ageing of reverse osmosis membranes upon exposure to hypochlorite. Desalination, 2013, 309: 97–105

    Article  CAS  Google Scholar 

  79. Tu K L, Chivas A R, Nghiem L D. Effects of chemical preservation on flux and solute rejection by reverse osmosis membranes. Journal of Membrane Science, 2014, 472: 202–209

    Article  CAS  Google Scholar 

  80. Badruzzaman M, Voutchkov N, Weinrich L, Jacangelo J G. Selection of pretreatment technologies for seawater reverse osmosis plants: a review. Desalination, 2019, 449: 78–91

    Article  CAS  Google Scholar 

  81. Freitas B de O, Leite L de S, Daniel L A. Chlorine and peracetic acid in decentralized wastewater treatment: disinfection, oxidation and odor control. Process Safety and Environmental Protection, 2021, 146: 620–628

    Article  CAS  Google Scholar 

  82. Wu Y H, Chen Z, Li X, Wang Y H, Liu B, Chen G Q, Luo L W, Wang H B, Tong X, Bai Y, et al. Effect of ultraviolet disinfection on the fouling of reverse osmosis membranes for municipal wastewater reclamation. Water Research, 2021, 195: 116995

    Article  CAS  PubMed  Google Scholar 

  83. Liu J, Zhang Z, Chen Q, Zhang X. Synergistic effect of ferrate (VI)-ozone integrated pretreatment on the improvement of water quality and fouling alleviation of ceramic UF membrane in reclaimed water treatment. Journal of Membrane Science, 2018, 567: 216–227

    Article  CAS  Google Scholar 

  84. Xu R, Jiang P, Wei C, Lü Z, Yu S, Liu M, Gao C. Depositing sericin on partially degraded polyamide reverse osmosis membrane for restored salt rejection and simultaneously enhanced resistance to both fouling and chlorine. Journal of Membrane Science, 2018, 545: 196–203

    Article  CAS  Google Scholar 

  85. Mitrouli S T, Karabelas A J, Isaias N P, Al Rammah A S. Application of hydrophilic macromolecules on thin film composite polyamide membranes for performance restoration. Desalination, 2011, 278(1–3): 105–116

    Article  CAS  Google Scholar 

  86. Da Silva M K, Ambrosi A, Dos Ramos G M, Tessaro I C. Rejuvenating polyamide reverse osmosis membranes by tannic acid treatment. Separation and Purification Technology, 2012, 100: 1–8

    Article  Google Scholar 

  87. Liu L F, Wu H, Li R H, Yu C, Zhao X T, Gao C J. Modification of poly(amide-urethane-imide) (PAUI) thin film composite reverse osmosis membrane with nano-silver particles. RSC Advances, 2018, 8(66): 37817–37827

    Article  CAS  Google Scholar 

  88. Sun H, Chen Y, Liu J, Chai D, Li P, Wang M, Hou Y, Jason Niu Q. A novel chlorine-resistant polyacrylate nanofiltration membrane constructed from oligomeric phenolic resin. Separation and Purification Technology, 2021, 262: 118300

    Article  CAS  Google Scholar 

  89. La Y H, Sooriyakumaran R, Miller D C, Fujiwara M, Terui Y, Yamanaka K, McCloskey B D, Freeman B D, Allen R D. Novel thin film composite membrane containing ionizable hydrophobes: pH-dependent reverse osmosis behavior and improved chlorine resistance. Journal of Materials Chemistry, 2010, 20(22): 4615–4620

    Article  CAS  Google Scholar 

  90. Kim Y K, Lee S Y, Kim D H, Lee B S, Nam S Y, Rhim J W. Preparation and characterization of thermally crosslinked chlorine resistant thin film composite polyamide membranes for reverse osmosis. Desalination, 2010, 250(2): 865–867

    Article  CAS  Google Scholar 

  91. Wu S, Zheng C, Zheng G. Truly chlorine-resistant polyamide reverse osmosis composite membrane. Journal of Applied Polymer Science, 1996, 61(7): 1147–1148

    Article  CAS  Google Scholar 

  92. Zhang Y, Zhao C, Yan H, Pan G, Guo M, Na H, Liu Y. Highly chlorine-resistant multilayer reverse osmosis membranes based on sulfonated poly(arylene ether sulfone) and poly(vinyl alcohol). Desalination, 2014, 336(1): 58–63

    Article  CAS  Google Scholar 

  93. Zhang N, Song X, Jiang H, Tang C Y. Advanced thin-film nanocomposite membranes embedded with organic-based nano-materials for water and organic solvent purification: A review. Separation and Purification Technology, 2021, 269: 118719

    Article  CAS  Google Scholar 

  94. Liao Z, Zhu J, Li X, Van der Bruggen B. Regulating composition and structure of nanofillers in thin film nanocomposite (TFN) membranes for enhanced separation performance: A critical review. Separation and Purification Technology, 2021, 266: 118567

    Article  CAS  Google Scholar 

  95. Xu G R, Wang J N, Li C J. Strategies for improving the performance of the polyamide thin film composite (PA-TFC) reverse osmosis (RO) membranes: surface modifications and nanoparticles incorporations. Desalination, 2013, 328: 83–100

    Article  CAS  Google Scholar 

  96. Hailemariam R H, Woo Y C, Damtie M M, Kim B C, Park K D, Choi J S. Reverse osmosis membrane fabrication and modification technologies and future trends: a review. Advances in Colloid and Interface Science, 2020, 276: 102100

    Article  CAS  PubMed  Google Scholar 

  97. Li M P, Zhang X, Zhang H, Liu W L, Huang Z H, Xie F, Ma X H, Xu Z L. Hydrophilic yolk-shell ZIF-8 modified polyamide thin-film nanocomposite membrane with improved permeability and selectivity. Separation and Purification Technology, 2020, 247: 116990

    Article  CAS  Google Scholar 

  98. Sun J, Zhu L P, Wang Z H, Hu F, Zhang P B, Zhu B K. Improved chlorine resistance of polyamide thin-film composite membranes with a terpolymer coating. Separation and Purification Technology, 2016, 157: 112–119

    Article  CAS  Google Scholar 

  99. Cheng Q, Zheng Y, Yu S, Zhu H, Peng X, Liu J, Liu J, Liu M, Gao C. Surface modification of a commercial thin-film composite polyamide reverse osmosis membrane through graft polymerization of N-isopropylacrylamide followed by acrylic acid. Journal of Membrane Science, 2013, 447: 236–245

    Article  CAS  Google Scholar 

  100. Liu M, Chen Q, Wang L, Yu S, Gao C. Improving fouling resistance and chlorine stability of aromatic polyamide thin-film composite RO membrane by surface grafting of polyvinyl alcohol (PVA). Desalination, 2015, 367: 11–20

    Article  CAS  Google Scholar 

  101. Goh P S, Zulhairun A K, Ismail A F, Hilal N. Contemporary antibiofouling modifications of reverse osmosis desalination membrane: a review. Desalination, 2019, 468: 114072

    Article  CAS  Google Scholar 

  102. Liu Q, Xu G R. Graphene oxide (GO) as functional material in tailoring polyamide thin film composite (PA-TFC) reverse osmosis (RO) membranes. Desalination, 2016, 394: 162–175

    Article  CAS  Google Scholar 

  103. Chae H R, Lee J, Lee C H, Kim I C, Park P K. Graphene oxide-embedded thin-film composite reverse osmosis membrane with high flux, anti-biofouling, and chlorine resistance. Journal of Membrane Science, 2015, 483: 128–135

    Article  CAS  Google Scholar 

  104. Aziz A A, Wong K C, Goh P S, Ismail A F, Azelee I W. Tailoring the surface properties of carbon nitride incorporated thin film nanocomposite membrane for forward osmosis desalination. Journal of Water Process Engineering, 2020, 33: 101005

    Article  Google Scholar 

  105. Kang G D, Gao C J, Chen W D, Jie X M, Cao Y M, Yuan Q. Study on hypochlorite degradation of aromatic polyamide reverse osmosis membrane. Journal of Membrane Science, 2007, 300(1–2): 165–171

    Article  CAS  Google Scholar 

  106. Soice N P, Maladono A C, Takigawa D Y, Norman A D, Krantz W B, Greenberg A R. Oxidative degradation of polyamide reverse osmosis membranes: studies of molecular model compounds and selected membranes. Journal of Applied Polymer Science, 2003, 90(5): 1173–1184

    Article  CAS  Google Scholar 

  107. Tang C Y, Kwon Y N, Leckie J O. Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes. I. FTIR and XPS characterization of polyamide and coating layer chemistry. Desalination, 2009, 242(1–3): 149–167

    Article  CAS  Google Scholar 

  108. Xie Y, Gao S, Eslamian M. Fundamental study on the effect of spray parameters on characteristics of P3HT: PCBM active layers made by spray coating. Coatings, 2015, 5(3): 488–510

    Article  CAS  Google Scholar 

  109. Saqib J, Aljundi I H. Membrane fouling and modification using surface treatment and layer-by-layer assembly of polyelectrolytes: state-of-the-art review. Journal of Water Process Engineering, 2016, 11: 68–87

    Article  Google Scholar 

  110. Goh P S, Ismail A F. Chemically functionalized polyamide thin film composite membranes: the art of chemistry. Desalination, 2020, 495: 114655

    Article  CAS  Google Scholar 

  111. Lee X J, Show P L, Katsuda T, Chen W H, Chang J S. Surface grafting techniques on the improvement of membrane bioreactor: state-of-the-art advances. Bioresource Technology, 2018, 269: 489–502

    Article  CAS  PubMed  Google Scholar 

  112. Yan Z, Zhang Y, Yang H, Fan G, Ding A, Liang H, Li G, Ren N, Van der Bruggen B. Mussel-inspired polydopamine modification of polymeric membranes for the application of water and wastewater treatment: a review. Chemical Engineering Research & Design, 2020, 157: 195–214

    Article  CAS  Google Scholar 

  113. Faria A F, Liu C, Xie M, Perreault F, Nghiem L D, Ma J, Elimelech M. Thin-film composite forward osmosis membranes functionalized with graphene oxide-silver nanocomposites for biofouling control. Journal of Membrane Science, 2017, 525: 146–156

    Article  CAS  Google Scholar 

  114. Perreault F, Tousley M E, Elimelech M. Thin-film composite polyamide membranes functionalized with biocidal graphene oxide nanosheets. Environmental Science & Technology Letters, 2014, 1(1): 71–76

    Article  CAS  Google Scholar 

  115. Lego B, François M, Skene W G, Giasson S. Polymer brush covalently attached to OH-functionalized mica surface via surface-initiated ATRP: control of grafting density and polymer chain length. Langmuir, 2009, 25(9): 5313–5321

    Article  CAS  PubMed  Google Scholar 

  116. Yue W W, Li H J, Xiang T, Qin H, Sun S D, Zhao C S. Grafting of zwitterion from polysulfone membrane via surface-initiated ATRP with enhanced antifouling property and biocompatibility. Journal of Membrane Science, 2013, 446: 79–91

    Article  CAS  Google Scholar 

  117. El-Arnaouty M B, Abdel-Ghaffar A M, Eid M, Aboulfotouh M E, Taher N H, Soliman E S. Nano-modification of polyamide thin film composite reverse osmosis membranes by radiation grafting. Journal of Radiation Research and Applied Sciences, 2018, 11(3): 204–216

    Article  CAS  Google Scholar 

  118. Teow Y H, Mohammad A W. New generation nanomaterials for water desalination: a review. Desalination, 2019, 451: 2–17

    Article  CAS  Google Scholar 

  119. Wang Y, Wang Z, Wang J. Lab-scale and pilot-scale fabrication of amine-functional reverse osmosis membrane with improved chlorine resistance and antimicrobial property. Journal of Membrane Science, 2018, 554: 221–231

    Article  CAS  Google Scholar 

  120. Zhang T, Zhang K, Li J, Yue X. Simultaneously enhancing hydrophilicity, chlorine resistance and anti-biofouling of APA-TFC membrane surface by densely grafting quaternary ammonium cations and salicylaldimines. Journal of Membrane Science, 2017, 528: 296–302

    Article  CAS  Google Scholar 

  121. Wang Y, Zhang H, Song C, Gao C, Zhu G. Effect of aminophend/formaldehyde resin polymeric nanospheres as nanofiller on polyamide thin film nanocomposite membranes for reverse osmosis application. Journal of Membrane Science, 2020, 614: 118496

    Article  CAS  Google Scholar 

  122. Liu M, Yu C, Dong Z, Jiang P, Lü Z, Yu S, Gao C. Improved separation performance and durability of polyamide reverse osmosis membrane in tertiary treatment of textile effluent through grafting monomethoxy-poly(ethylene glycol) brushes. Separation and Purification Technology, 2019, 209: 443–451

    Article  CAS  Google Scholar 

  123. Hu Y, Lu K, Yan F, Shi Y, Yu P, Yu S, Li S, Gao C. Enhancing the performance of aromatic polyamide reverse osmosis membrane by surface modification via covalent attachment of polyvinyl alcohol (PVA). Journal of Membrane Science, 2016, 501: 209–219

    Article  CAS  Google Scholar 

  124. Gholami S, Rezvani A, Vatanpour V, Cortina J L. Improving the chlorine resistance property of polyamide TFC RO membrane by polyethylene glycol diacrylate (PEGDA) coating. Desalination, 2018, 443: 245–255

    Article  CAS  Google Scholar 

  125. Yan W, Liu L, Dong C, Xie S, Zhao X, Gao C. Surface modification of reverse osmosis membrane with tannic acid for improving chlorine resistance. Desalination, 2021, 498: 114639

    Article  CAS  Google Scholar 

  126. Yan W, Wang Z, Zhao S, Wang J, Zhang P, Cao X. Combining cosolvent-optimized interfacial polymerization and protective coating-controlled chlorination for highly permeable reverse osmosis membranes with high rejection. Journal of Membrane Science, 2019, 572: 61–72

    Article  CAS  Google Scholar 

  127. Cao S, Zhang G, Xiong C, Long S, Wang X, Yang J. Preparation and characterization of thin-film-composite reverse-osmosis polyamide membrane with enhanced chlorine resistance by introducing thioether units into polyamide layer. Journal of Membrane Science, 2018, 564: 473–482

    Article  CAS  Google Scholar 

  128. Huang H, Lin S, Zhang L, Hou L. Chlorine-resistant polyamide reverse osmosis membrane with monitorable and regenerative sacrificial layers. ACS Applied Materials & Interfaces, 2017, 9(11): 10214–10223

    Article  CAS  Google Scholar 

  129. Zhang X, Huang H, Li Q, Yu H, Tian X, Zhao M, Zhang H. Facile dual-functionalization of polyamide reverse osmosis membrane by a natural polypeptide to improve the antifouling and chlorine-resistant properties. Journal of Membrane Science, 2020, 604: 118044

    Article  CAS  Google Scholar 

  130. Chung T S, Chng M L, Pramoda K P, Xiao Y. PAMAM dendrimer-induced cross-linking modification of polyimide membranes. Langmuir, 2004, 20(7): 2966–2969

    Article  CAS  PubMed  Google Scholar 

  131. Nagandran S, Goh P S, Ismail A F, Wong T W, Wan-Dagang W R Z. The recent progress in modification of polymeric membranes using organic macromolecules for water treatment. Symmetry, 2020, 12(2): 239

    Article  CAS  Google Scholar 

  132. Asempour F, Akbari S, Kanani-Jazi M H, Atashgar A, Matsuura T, Kruczek B. Chlorine-resistant TFN RO membranes containing modified poly(amidoamine) dendrimer-functionalized halloysite nanotubes. Journal of Membrane Science, 2021, 623: 119039

    Article  CAS  Google Scholar 

  133. Vatanpour V, Sanadgol A. Surface modification of reverse osmosis membranes by grafting of polyamidoamine dendrimer containing graphene oxide nanosheets for desalination improvement. Desalination, 2020, 491: 114442

    Article  CAS  Google Scholar 

  134. Lin S, Huang H, Zeng Y, Zhang L, Hou L. Facile surface modification by aldehydes to enhance chlorine resistance of polyamide thin film composite membranes. Journal of Membrane Science, 2016, 518: 40–49

    Article  CAS  Google Scholar 

  135. Liu S, Low Z X, Hegab H M, Xie Z, Ou R, Yang G, Simon G P, Zhang X, Zhang L, Wang H. Enhancement of desalination performance of thin-film nanocomposite membrane by cellulose nanofibers. Journal of Membrane Science, 2019, 592: 117363

    Article  Google Scholar 

  136. Smith A T, LaChance A M, Zeng S, Liu B, Sun L. Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Materials Science, 2019, 1(1): 31–47

    Article  Google Scholar 

  137. Hamdy G, Taher A. Enhanced chlorine-resistant and low biofouling reverse osmosis polyimide-graphene oxide thin film nanocomposite membranes for water desalination. Polymer Engineering and Science, 2020, 60(10): 2567–2580

    Article  CAS  Google Scholar 

  138. Kim H J, Lim M Y, Jung K H, Kim D G, Lee J C. Highperformance reverse osmosis nanocomposite membranes containing the mixture of carbon nanotubes and graphene oxides. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(13): 6798–6809

    Article  CAS  Google Scholar 

  139. An S, Wu J, Nie Y, Li W, Fortner J D. Free chlorine induced phototransformation of graphene oxide in water: reaction kinetics and product characterization. Chemical Engineering Journal, 2020, 381: 122609

    Article  CAS  Google Scholar 

  140. Hegab H M, Zou L. Graphene oxide-assisted membranes: fabrication and potential applications in desalination and water purification. Journal of Membrane Science, 2015, 484: 95–106

    Article  CAS  Google Scholar 

  141. Shao F, Dong L, Dong H, Zhang Q, Zhao M, Yu L, Pang B, Chen Y. Graphene oxide modified polyamide reverse osmosis membranes with enhanced chlorine resistance. Journal of Membrane Science, 2017, 525: 9–17

    Article  CAS  Google Scholar 

  142. Shao F, Su X, Shen X, Ren S, Wang H, Yi Z, Xu C, Yu L, Dong L. Highly improved chlorine resistance of polyamide reverse membrane by grafting layers of graphene oxide. Separation and Purification Technology, 2021, 254: 1–9

    Article  Google Scholar 

  143. Abbaszadeh M, Krizak D, Kundu S. Layer-by-layer assembly of graphene oxide nanoplatelets embedded desalination membranes with improved chlorine resistance. Desalination, 2019, 470: 114116

    Article  CAS  Google Scholar 

  144. Yi Z, Shao F, Yu L, Song N, Dong H, Pang B, Yu J, Feng J, Dong L. Chemical grafting N-GOQD of polyamide reverse osmosis membrane with improved chlorine resistance, water flux and NaCl rejection. Desalination, 2020, 479: 114341

    Article  CAS  Google Scholar 

  145. Ge M, Wang X, Wu S, Long Y, Yang Y, Zhang J. Highly antifouling and chlorine resistance polyamide reverse osmosis membranes with g-C3N4 nanosheets as nanofiller. Separation and Purification Technology, 2021, 258: 117980

    Article  CAS  Google Scholar 

  146. Zhu J, Xiao P, Li H, Carabineiro S A C. Graphitic carbon nitride: synthesis, properties, and applications in catalysis. ACS Applied Materials & Interfaces, 2014, 6(19): 16449–16465

    Article  CAS  Google Scholar 

  147. Niu P, Zhang L, Liu G, Cheng H M. Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Advanced Functional Materials, 2012, 22(22): 4763–4770

    Article  CAS  Google Scholar 

  148. Xu C, Shao F, Yi Z, Dong H, Zhang Q, Yu J, Feng J, Wu X, Zhang Q, Yu L, Dong L. Highly chlorine resistance polyamide reverse osmosis membranes with oxidized graphitic carbon nitride by ontology doping method. Separation and Purification Technology, 2019, 223: 178–185

    Article  CAS  Google Scholar 

  149. Zhao D L, Yeung W S, Zhao Q, Chung T S. Thin-film nanocomposite membranes incorporated with UiO-66-NH2 nanoparticles for brackish water and seawater desalination. Journal of Membrane Science, 2020, 604: 118039

    Article  CAS  Google Scholar 

  150. Zhang X, Huang H, Li X, Wang J, Wei Y, Zhang H. Bioinspired chlorine-resistant tailoring for polyamide reverse osmosis membrane based on tandem oxidation of natural α-lipoic acid on the surface. Journal of Membrane Science, 2021, 618: 118521

    Article  CAS  Google Scholar 

  151. Yang P, Deng J Y, Yang W T. Confined photo-catalytic oxidation: a fast surface hydrophilic modification method for polymeric materials. Polymer, 2003, 44(23): 7157–7164

    Article  CAS  Google Scholar 

  152. Bing S, Wang J, Xu H, Zhao Y, Zhou Y, Zhang L, Gao C, Hou L. Polyamide thin-film composite membrane modified with persulfate for improvement of perm-selectivity and chlorine-resistance. Journal of Membrane Science, 2018, 555: 318–326

    Article  CAS  Google Scholar 

  153. Ni L, Meng J, Li X, Zhang Y. Surface coating on the polyamide TFC RO membrane for chlorine resistance and antifouling performance improvement. Journal of Membrane Science, 2014, 451: 205–215

    Article  CAS  Google Scholar 

  154. Qu K, Huang K, Xu Z. Recent progress in the design and fabrication of MXene-based membranes. Frontiers of Chemical Science and Engineering, 2021, 15(4): 820–836

    Article  CAS  Google Scholar 

  155. Al-Hamadani Y A J, Jun B M, Yoon M, Taheri-Qazvini N, Snyder S A, Jang M, Heo J, Yoon Y. Applications of MXene-based membranes in water purification: a review. Chemosphere, 2020, 254: 126821

    Article  CAS  PubMed  Google Scholar 

  156. Wang X, Li Q, Zhang J, Huang H, Wu S, Yang Y. Novel thin-film reverse osmosis membrane with MXene Ti3C2Tx embedded in polyamide to enhance the water flux, anti-fouling and chlorine resistance for water desalination. Journal of Membrane Science, 2020, 603: 118036

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support provided by the Ministry of Higher Education Malaysia under Malaysia Research University Network Grant (Grant No. 4L862) and the research support provided by Universiti Teknologi Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pei Sean Goh or Ahmad Fauzi Ismail.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goh, P.S., Wong, K.C., Wong, T.W. et al. Surface-tailoring chlorine resistant materials and strategies for polyamide thin film composite reverse osmosis membranes. Front. Chem. Sci. Eng. 16, 564–591 (2022). https://doi.org/10.1007/s11705-021-2109-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-021-2109-z

Keywords

Navigation