Skip to main content
Log in

Facile solvothermal synthesis of NiFe2O4 nanoparticles for high-performance supercapacitor applications

  • Research Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

We report a green and facile approach for the synthesis of NiFe2O4 (NF) nanoparticles with good crystallinity. The prepared materials are studied by various techniques in order to know their phase structure, crystallinity, morphology and elemental state. The BET analysis revealed a high surface area of 80.0 m2·g−1 for NF possessing a high pore volume of 0.54 cm3·g−1, also contributing to the amelioration of the electrochemical performance. The NF sample is studied for its application in supercapacitors in an aqueous 2 mol·L−1 KOH electrolyte. Electrochemical properties are studied both in the three-electrode method and in a symmetrical supercapacitor cell. Results show a high specific capacitance of 478.0 F·g−1 from the CV curve at an applied scan rate of 5 mV·s−1 and 368.0 F·g−1 from the GCD analysis at a current density of 1 A·g−1 for the NF electrode. Further, the material exhibited an 88% retention of its specific capacitance after continuous 10000 cycles at a higher applied current density of 8 A·g−1. These encouraging properties of NF nanoparticles suggest the practical applicability in high-performance supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sudhakar Y N, Selvakumar M, Bhat D K. Biopolymer Electrolytes: Fundamentals and Applications in Energy Storage. Elsevier, 2018

  2. Sadiq M M J, Shenoy S U, Bhat D K. Novel NRGO-CoWO4-Fe2O3 nanocomposite as an efficient catalyst for dye degradation and reduction of 4-nitrophenol. Materials Chemistry and Physics, 2018, 208: 112–122

    Article  Google Scholar 

  3. Peng H, Dai X, Sun K, et al. A high-performance asymmetric supercapacitor designed with a three-dimensional interconnected porous carbon framework and sphere-like nickel nitride nanosheets. New Journal of Chemistry, 2019, 43(32): 12623–12629

    Article  CAS  Google Scholar 

  4. Dutta S, Pal S, De S. Mixed solvent exfoliated transition metal oxides nanosheets based flexible solid state supercapacitor devices endowed with high energy density. New Journal of Chemistry, 2019, 43(31): 12385–12395

    Article  CAS  Google Scholar 

  5. Sethi M, Bhat D K. Facile solvothermal synthesis and high supercapacitor performance of NiCo2O4 nanorods. Journal of Alloys and Compounds, 2019, 781: 1013–1020

    Article  CAS  Google Scholar 

  6. Pan C, Liu Z, Li W, et al. NiCo2O4@polyaniline nanotubes heterostructure anchored on carbon textiles with enhanced electrochemical performance for supercapacitor application. The Journal of Physical Chemistry C, 2019, 123(42): 25549–25558

    Article  CAS  Google Scholar 

  7. Gao H, Wang X, Wang G, et al. Facile construction of a MgCo2O4@NiMoO4/NF core-shell nanocomposite for highperformance asymmetric supercapacitors. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2019, 7(42): 13267–13278

    Article  CAS  Google Scholar 

  8. Aparna M L, Grace A N, Sathyanarayanan P, et al. A comparative study on the supercapacitive behaviour of solvothermally prepared metal ferrite (MFe2O4, M = Fe, Co, Ni, Mn, Cu, Zn) nanoassemblies. Journal of Alloys and Compounds, 2018, 745: 385–395

    Article  CAS  Google Scholar 

  9. Kumar P R, Mitra S. Nickel ferrite as a stable, high capacity and high rate anode for Li-ion battery applications. RSC Advances, 2013, 3(47): 25058–25064

    Article  CAS  Google Scholar 

  10. Gao X, Wang W, Bi J, et al. Morphology-controllable preparation of NiFe2O4 as high performance electrode material for supercapacitor. Electrochimica Acta, 2019, 296: 181–189

    Article  CAS  Google Scholar 

  11. Bandgar S B, Vadiyar M M, Ling Y C, et al. Metal precursor dependent synthesis of NiFe2O4 thin films for high-performance flexible symmetric supercapacitor. ACS Applied Energy Materials, 2018, 1(2): 638–648

    Article  CAS  Google Scholar 

  12. Hua M, Xu L, Cui F, et al. Hexamethylenetetramine-assisted hydrothermal synthesis of octahedral nickel ferrite oxide nanocrystallines with excellent supercapacitive performance. Journal of Materials Science, 2018, 53(10): 7621–7636

    Article  CAS  Google Scholar 

  13. Bhojane P, Sharma A, Pusty M, et al. Synthesis of ammonia-assisted porous nickel ferrite (NiFe2O4) nanostructures as an electrode material for supercapacitors. Journal of Nanoscience and Nanotechnology, 2017, 17(2): 1387–1392

    Article  CAS  Google Scholar 

  14. Anwar S, Muthu K S, Ganesh V, et al. A comparative study of electrochemical capacitive behavior of NiFe2O4 synthesized by different routes. Journal of the Electrochemical Society, 2011, 158(8): A976–A981

    Article  CAS  Google Scholar 

  15. Zhang X, Zhang Z, Sun S, et al. A facile one-step hydrothermal approach to synthesize hierarchical core-shell NiFe2O4@NiFe2O4 nanosheet arrays on Ni foam with large specific capacitance for supercapacitors. RSC Advances, 2018, 8(27): 15222–15228

    Article  CAS  Google Scholar 

  16. Sethi M, Bantawal H, Shenoy U S, et al. Eco-friendly synthesis of porous graphene and its utilization as high performance supercapacitor electrode material. Journal of Alloys and Compounds, 2019, 799: 256–266

    Article  CAS  Google Scholar 

  17. Subramanya B, Bhat D K. Novel eco-friendly synthesis of graphene directly from graphite using 2,2,6,6-tetramethylpiperidine 1-oxyl and study of its electrochemical properties. Journal of Power Sources, 2015, 275: 90–98

    Article  CAS  Google Scholar 

  18. Giannozzi P, Baroni S, Bonini N, et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of Physics: Condensed Matter, 2009, 21(39): 395502

    Google Scholar 

  19. Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Physical Review Letters, 1996, 77(18): 3865–3868

    Article  CAS  Google Scholar 

  20. Shenoy U S, Bantawal H, Bhat D K. Band engineering of SrTiO3: Effect of synthetic technique and site occupancy of doped rhodium. The Journal of Physical Chemistry C, 2018, 122(48): 27567–27574

    Article  CAS  Google Scholar 

  21. Sadiq M M J, Shenoy U S, Bhat D K. Enhanced photocatalytic performance of N-doped RGO-FeWO4/Fe3O4 ternary nanocomposite in environmental applications. Materials Today Chemistry, 2017, 4: 133–141

    Article  Google Scholar 

  22. Zhao Y, Xu L, Yan J, et al. Facile preparation of NiFe2O4/MoS2 composite material with synergistic effect for high performance supercapacitor. Journal of Alloys and Compounds, 2017, 726: 608–617

    Article  CAS  Google Scholar 

  23. Sadiq M M J, Shenoy S U, Bhat D K. NiWO4-ZnO-NRGO ternary nanocomposite as an efficient photocatalyst for degradation of methylene blue and reduction of 4-nitro phenol. Journal of Physics and Chemistry of Solids, 2017, 109: 124–133

    Article  CAS  Google Scholar 

  24. Wu F, Wang X, Li M, et al. A high capacity NiFe2O4/RGO nanocomposites as superior anode materials for sodium-ion batteries. Ceramics International, 2016, 42(15): 16666–16670

    Article  CAS  Google Scholar 

  25. Cao N, Zou X, Huang Y, et al. Preparation of NiFe2O4 architectures for affinity separation of histidine-tagged proteins. Materials Letters, 2015, 144: 161–164

    Article  CAS  Google Scholar 

  26. Liu L, Sun L, Liu J, et al. Enhancing the electrochemical properties of NiFe2O4 anode for lithium ion battery through a simple hydrogenation modification. International Journal of Hydrogen Energy, 2014, 39(21): 11258–11266

    Article  CAS  Google Scholar 

  27. Subramanya B, Bhat D K. Novel one-pot green synthesis of graphene in aqueous medium under microwave irradiation using a regenerative catalyst and the study of its electrochemical properties. New Journal of Chemistry, 2015, 39(1): 420–430

    Article  CAS  Google Scholar 

  28. Zhang Z, Li L, Qing Y, et al. Manipulation of nanoplate structures in carbonized cellulose nanofibril aerogel for high-performance supercapacitor. The Journal of Physical Chemistry C, 2019, 123(38): 23374–23381

    Article  CAS  Google Scholar 

  29. Bhat D K, Shenoy U S. Zn: a versatile resonant dopant for SnTe thermoelectrics. Materials Today Chemistry, 2019, 11: 100158

    Google Scholar 

  30. Shenoy U S, Bhat D K. Electronic structure engineering of tin telluride through co-doping of bismuth and indium for high performance thermoelectrics: a synergistic effect leading to a record high room temperature ZT in tin telluride. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2019, 7(16): 4817–4821

    Article  CAS  Google Scholar 

  31. Shenoy U S, Bhat D K. Bi and Zn co-doped SnTe thermoelectrics: interplay of resonance levels and heavy hole band dominance leading to enhanced performance and a record high room temperature ZT. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2020, 8(6): 2036–2042

    Article  CAS  Google Scholar 

  32. Kumar N, Kumar A, Huang G M, et al. Facile synthesis of mesoporous NiFe2O4/CNTs nanocomposite cathode material for high performance asymmetric pseudocapacitors. Applied Surface Science, 2018, 433: 1100–1112

    Article  CAS  Google Scholar 

  33. Foo C Y, Lim H N, Mahdi M A B, et al. High-performance supercapacitor based on three-dimensional hierarchical rGO/nickel cobaltite nanostructures as electrode materials. The Journal of Physical Chemistry C, 2016, 120(38): 21202–21210

    Article  CAS  Google Scholar 

  34. Zhang X, Zhu M, Ouyang T, et al. NiFe2O4 nanocubes anchored on reduced graphene oxide cryogel to achieve a 1.8 V flexible solid-state symmetric supercapacitor. Chemical Engineering Journal, 2019, 360: 171–179

    Article  CAS  Google Scholar 

  35. Cai Y Z, Cao W Q, Zhang Y L, et al. Tailoring rGO-NiFe2O4 hybrids to tune transport of electrons and ions for supercapacitor electrodes. Journal of Alloys and Compounds, 2019, 811: 152011

    Article  CAS  Google Scholar 

  36. Zhang X, Zhang Z, Sun S, et al. A facile one-step hydrothermal approach to synthesize hierarchical core-shell NiFe2O4@NiFe2O4 nanosheet arrays on Ni foam with large specific capacitance for supercapacitors. RSC Advances, 2018, 8(27): 15222–15228

    Article  CAS  Google Scholar 

  37. Fu M, Chen W, Zhu X, et al. One-step preparation of one dimensional nickel ferrites/graphene composites for supercapacitor electrode with excellent cycling stability. Journal of Power Sources, 2018, 396: 41–48

    Article  CAS  Google Scholar 

  38. Sharma V, Biswas S, Sundaram B, et al. Electrode materials with highest surface area and specific capacitance cannot be the only deciding factor for applicability in energy storage devices: inference of combined life cycle assessment and electrochemical studies. ACS Sustainable Chemistry & Engineering, 2019, 7(5): 5385–5392

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Krishna Bhat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sethi, M., Shenoy, U.S., Muthu, S. et al. Facile solvothermal synthesis of NiFe2O4 nanoparticles for high-performance supercapacitor applications. Front. Mater. Sci. 14, 120–132 (2020). https://doi.org/10.1007/s11706-020-0499-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-020-0499-3

Keywords

Navigation