Skip to main content
Log in

Liquid metal cooling in thermal management of computer chips

  • Review Article
  • Published:
Frontiers of Energy and Power Engineering in China Aims and scope Submit manuscript

Abstract

With the rapid improvement of computer performance, tremendous heat generation in the chip becomes a major serious concern for thermal management. Meanwhile, CPU chips are becoming smaller and smaller with almost no room for the heat to escape. The total power-dissipation levels now reside on the order of 100 W with a peak power density of 400–500 W/cm2, and are still steadily climbing. As a result, it is extremely hard to attain higher performance and reliability. Because the conventional conduction and forcedair convection techniques are becoming incapable in providing adequate cooling for sophisticated electronic systems, new solutions such as liquid cooling, thermoelectric cooling, heat pipes, vapor chambers, etc. are being studied. Recently, it was realized that using a liquid metal or its alloys with a low melting point as coolant could significantly lower the chip temperature. This new generation heat transfer enhancement method raised many important fundamentals and practical issues to be solved. To accommodate to the coming endeavor in this area, this paper is dedicated to presenting an overall review on chip cooling using liquid metals or their alloys as coolant. Much more attention will be paid to the thermal properties of liquid metals with low melting points or their alloys and their potential applications in the chip cooling. Meanwhile, principles of several typical pumping methods such as mechanical, electromagnetic or peristaltic pumps will be illustrated. Some new advancement in making a liquid metal cooling device will be discussed. The liquid metal cooling is expected to open a new world for computer chip cooling because of its evident merits over traditional coolant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li T, Lv Y G, Liu J, et al. A powerful way of cooling computer chip using liquid metal with low melting point as the cooling fluid. Forsch Ingenieurwes, 2005, 70: 243–251

    Article  Google Scholar 

  2. Pautsch G. How is high heat flux cooling technology being driven by supercomputers. Proceedings of the 9th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 2004, 2: 702–703

    Article  Google Scholar 

  3. International Technology Roadmap for Semiconductors (ITRS 2005 Edition). In: http://www.itrs.net/Links/2005ITRS/Home2005.htm 2007, last accessed 28/03/2007

  4. Strassberg D. Cooling hot microprocessors. EDN (European Edition), 1994, 39: 40–48

    Google Scholar 

  5. Lundquist C, Carey V P. Microprocessor-based adaptive thermal control for an air-cooled computer CPU module. In: Proceedings of the 17th Annual IEEE Semiconductor Thermal Measurement and Management Symposium, San Jose, USA: IEEE, 2001, 168–173

    Google Scholar 

  6. Semeniouk V, Fleurial J P. Novel high performance thermoelectric microcoolers with diamond substrates. In: Proceedings of the 1997 16th International Conference on Thermoelectrics, Dresden, Germany: IEEE, 1997, 683–686

    Google Scholar 

  7. Disalvo F J. Thermoelectric cooling and power generation. Science, 1999, 285: 703–706

    Article  Google Scholar 

  8. Simons R E, Chu R C. Application of thermoelectric cooling to electronic equipment: A review and analysis. In: Proceedings of the 16th Annual IEEE Semiconductor Thermal Measurement and Management Symposium, San Jose, USA: IEEE, 2000, 1–9

    Google Scholar 

  9. Xie H, Ali A, Bhatia R. Use of heat pipes in personal computers. In: Proceedings of the Intersociety Conference—Thermomechanical Phenomena in Electronic Systems, Seattle, USA: IEEE, 1998, 442–448

    Google Scholar 

  10. Nquyen T, Mochizuki M, Mashiko K, et al. Use of heat pipe/heat sink for thermal management of high performance CPUS. In: Proceedings of the 16th Annual IEEE Semiconductor Thermal Measurement and Management Symposium, San Jose, USA: IEEE, 2000, 76–79

    Google Scholar 

  11. Rao W, Zhou Y X, Liu J, et al. Vapor-Compression-Refrigerator Enabled Thermal Management of High Performance Computer. Beijing: International Congress of Refrigeration, 2007

    Google Scholar 

  12. Amon C, Murthy J, Yao S C. MEMS-enabled thermal management of high-heat-flux devices EDIFICE embedded droplet impingement for integrated cooling of electronics. Exp Therm Fluid Sci, 2001, 25: 231–242

    Article  Google Scholar 

  13. Kang W, Xu Z, Pan C. MHD stabilities of liquid metal jet flows with gradient magnetic field. Fusion Eng Des, 2006, 81: 1 019–1 025

    Google Scholar 

  14. Tuckerman D B, Pease R F W. High-performance heat sinking for VLSI. IEEE Electron Device Lett, 1981, 2: 126–129

    Google Scholar 

  15. Ma H B, Wilson C, Borgmeyer B, et al. Effect of nanofluid on the heat transport capability in an oscillating heat pipe. Appl Phys Lett, 2006, 88: 143–116

    Google Scholar 

  16. Choi S U S. Enhancing thermal conductivity of fluids with nanoparticles. In: Springer D A, Wang H P, eds. Departments and Applications of Non-Newtonian Fluids. New York: ASME, 1995, FED-Vol.231/MD-Vol.66, 6–12

    Google Scholar 

  17. Buongiorno J. Convective transport in nanofluids. ASME J Heat Trans, 2006, 128: 240–250

    Article  Google Scholar 

  18. Liu J, Zhou Y X. A computer chip cooling method which uses low melting point metal and its alloys as the cooling fluid. China Patent, 02131419.5, 2002

  19. Miner A, Ghoshal U. Cooling of high-power-density microdevices using liquid metal coolants. Appl Phys Lett, 2004, 85: 506–508

    Article  Google Scholar 

  20. Li T, Lv Y G, Liu J, et al. Computer chip cooling method using low melting point liquid metal or its alloy as the cooling fluid. In: Annual Heat and Mass Transfer Conference of the Chinese Society of Engineering Thermophysics, Jilin, China: Association of Engineering Thermophysics, 2004, 1 115–1 118 (in Chinese)

    Google Scholar 

  21. Liu J, Zhou Y X, Lv Y G, et al. Liquid metal based miniaturized chip-cooling device driven by electromagnetic pump. ASME Electronic and Photonic Packaging, Electronic and Photonic Packaging, Integration and Packaging of Micro/Nano/Electronic Systems, 2005, 5: 501–510

    Google Scholar 

  22. Zrodnikov A V, Efanov A D, Orlov Y I, et al. Heavy liquid metal coolant: Lead-bismuth and lead-technology. Atomic Energy, 2004, 97: 534–537

    Article  Google Scholar 

  23. Anonymous authors. Fast breeder reactors. In: http://www.npp.hu/mukodes/tipusok/gyorsreak-e.htm 2007, last accessed 28/03/2007

  24. Sato K, Furutani A, Saito M, et al. Melting attack of solid plates by a high-temperature liquid jet II—Erosion behavior by a molten metal jet. Nucl Eng Des, 1991, 132: 171–186

    Google Scholar 

  25. Yang W S. Blanket design studies for maximizing the discharge burnup of liquid metal cooled ATW systems. Ann Nucl Energy, 2002, 29: 509–523

    Article  Google Scholar 

  26. Smither R K, Forster G A, Kot C A, et al. Liquid gallium metal cooling for optical elements with high heat loads. Nucl Instrum Meth A, 1988, 266: 517–524

    Article  Google Scholar 

  27. Blackburn B W, Yanch J C. Liquid gallium cooling for a high power beryllium target for use in accelerator boron neutron capture therapy (ABNCT). In: Proceedings of Eighth Workshop on Targetry and Target Chemistry, St. Louis, Missouri, USA, 1999, 7–9

  28. Blackburn B W. High-power target development for accelerator based neutron capture theory. Dissertation for the Doctoral Degree. MIT, Boston, MA, 2002

    Google Scholar 

  29. Smither R K. Liquid metal cooling of synchrotron optics. SPIE High Heat Flux Engineering, 1992, 1739: 116–134

    Google Scholar 

  30. Tak N I, Song T Y, Kim C H. Thermal hydraulic investigations on lead-bismuth cooled fuel assemblies with ducts. Prog Nucl Energ, 2004, 44: 67–74

    Article  Google Scholar 

  31. Farabolini W, Ciampichetti A, Dabbene F, et al. Tritium control modeling for a helium cooled lithium-lead blanket of a fusion power reactor. Fusion Eng Des, 2006, 81: 753–762

    Article  Google Scholar 

  32. Zhang Y N, Wang L, Wang W M, et al. Structural transition of sheared-liquid metal in quenching state. Phys Lett A, 2006, 355: 142–147

    Article  Google Scholar 

  33. Cornell D A. Structure study of liquid gallium and mercury by nuclear magnetic resonance. Phys Rev, 1967, 153: 208–216

    Article  Google Scholar 

  34. Schommers W. Pair potentials in disordered many-particle systems: A study for liquid gallium. Phys Rev A, 1983, 28: 3 599–3 605

    Article  Google Scholar 

  35. Narten A H. Liquid gallium: Comparison of X-ray and neutron-diffraction data. J Chem Phys, 1972, 56: 1 185–1 189

    Google Scholar 

  36. Koster J N. Directional solidification and melting of eutectic Galn. Cryst Res Technol, 1999, 34: 1 129–1 140

    Article  Google Scholar 

  37. Burton R G, Burton R A. Gallium alloy as lubricant for high-current-density brushes. IEEE Trans Compon Hybr Manufact Technol, 1988, 11: 112–115

    Article  Google Scholar 

  38. Kuczhowski T J, Buckley D H. Friction and wear of low melting binary and ternary gallium alloy films in argon and in vacuum. NASA Tech Note, Washington, D. C., NASA TN D-2721, 1965, 1–14

  39. Kolokol A S, Shimkevich A L. Toplogical structure of liquid metals. Atomic Energy, 2005, 98: 187–190

    Article  Google Scholar 

  40. Swalin R A. On the theory of self-diffusion in liquid metals. Acta Metallurgica, 1959, 7(N11): 736–740

    Article  Google Scholar 

  41. Keck P H, Broder J. The solubility of silicon and germanium in gallium and indium. Phys Rev, 1953, 90(4): 521–522

    Article  Google Scholar 

  42. Cao A, Yueh P, Lin L. Bi-directional micro relays with liquid metal wetted contacts. In: Proceedings of 18th IEEE International Conference on Micro Electro Mechanical Systems, Miami Beach, FL, USA: IEEE, 2005, 371–374

    Chapter  Google Scholar 

  43. Burton R A, Burton R G. Properties and performance of gallium alloys in sliding contacts. In: Proceedings of the 34th Meeting of the IEEE Holm Conference on Electrical Contacts, San Francisco, CA, USA: IEEE, 1988, 187–192

    Chapter  Google Scholar 

  44. Sawada T, Netchaev A, Ninokata H, et al. Gallium-cooled liquid metallic-fueled fast reactor. Prog Nucl Energ, 2000, 37: 313–319

    Article  Google Scholar 

  45. Badyal Y S, Bafile U, Miyazaki K, et al. Cage diffusion in liquid mercury. Phys Rev E, 2003, 68: 061208

    Google Scholar 

  46. Nisoli M, Stagira S, Silvestri S D. Ultrafast electronic dynamics in solid and liquid gallium nanoparticles. Phys Rev Lett, 1997, 78: 3 575–3 578

    Google Scholar 

  47. Mudawar I. Assessment of high-heat-flux thermal management schemes. IEEE Trans Compon Pack Technol, 2001, 24: 122–141

    Article  Google Scholar 

  48. Gurrum S P, Suman S K, Joshi Y K, et al. Thermal issues in next-generation integrated circuits. IEEE Trans Device Mater Reliab, 2004, 4: 709–714

    Article  Google Scholar 

  49. Bhattacharya A, Mahajan R L. Finned metal foam heat sinks for electronics cooling in forced convection. J Electron Packing, 2002, 124: 155–163

    Article  Google Scholar 

  50. Smither R K, Lee W, Macrander A, et al. Recent experiments with liquid gallium cooling of crystal diffraction optics. Rev Sci Instrum, 1992, 63: 1 746–1 754

    Google Scholar 

  51. Bae K, Guo Z, Sprecher A F, et al. Effects of r-ratio and wave form on the fatigue of 63Sn-37Pb solder used in electronic packaging. Fifth IEEE CHMT Int Electron Manuf Technol Symp Proc 1988 Des to Manuf Transfer Cycle, 1988, 5: 143–148

    Article  Google Scholar 

  52. Kalashnikov E V. Thermodynamically stable states in eutectic systems. Tech Phys, 1997, 42: 330–335

    Article  Google Scholar 

  53. Plevachuk Y, Sklyarchuk V, Yakymovych A, et al. Electronic properties and viscosity of liquid Pb-Sn alloys. J Alloy Comp, 2005, 394: 63–68

    Article  Google Scholar 

  54. Paradis P F, Ishikawa T, Fujii R, et al. Physical properties of liquid and undercooled tungsten by levitation techniques. Appl Phys Lett, 2005, 86: 041901

    Google Scholar 

  55. Iida T, Guthrie R I L. The Physical Properties of Liquid Metals. Oxford: Clarendon Press, 1993

    Google Scholar 

  56. Shimoji M. Liquid Metals. New York: Academic Press, 1977

    Google Scholar 

  57. Kaneko Y, Thoendel M, Olakanmi O, et al. The transition metal gallium disrupts pseudomonas aeruginosa iron metabolism and has antimicrobial and antibiofilm activity. J Clin Invest, Published online on March 15, 2007

  58. Tripathi V, Loh Y L. Thermal conductivity of a granular metal. Phys Rev Lett, 2006, 96: 046805

    Google Scholar 

  59. Wang Q, Li Y X. Theoretical study of electrical transport properties of liquid metals and alloy. Mater Rev, 2001, 15(8): 7–9 (in Chinese)

    Google Scholar 

  60. Wang Q, Li L X. Measurement of electrical resistivity and thermopower of liquid metals. Mater Rev, 2001, 15(11): 10–12 (in Chinese)

    Google Scholar 

  61. Mathiak G, Plescher E, Willnecker R. Liquid metal diffusion experiments in microgravity-vibrational effects. Meas Sci Technol, 2005, 16(2): 336–344

    Article  Google Scholar 

  62. Bohdansky J. Temperature dependence of surface tension for liquid metals. J Chem Phys, 1968, 49: 2 982–2 986

    Article  Google Scholar 

  63. Lee J, Shimoda W, Tanaka T. Temperature dependence of surface tension of liquid Sn-Ag, In-Ag and In-Cu alloys. Meas Sci Technol, 2005, 16: 438–442

    Article  Google Scholar 

  64. Hardy S C. The surface tension of liquid gallium. J Cryst Growth, 1985, 7: 602–606

    Article  Google Scholar 

  65. Wilde G. The static and dynamic specific heat of undercooled metallic liquids. J Non-Cryst Solids, 2002, 307–310: 853–862

    Article  Google Scholar 

  66. Liu Z, Bando Y, Mitome M, et al. Unusual freezing and melting of gallium encapsulated in carbon nanotubes. Phys Rev Lett, 2004, 93: 095504

    Google Scholar 

  67. Bosio L, Windsor C G. Observation of a metastability limit in liquid gallium. Phys Rev Lett, 1975, 35: 1 652–1 655

    Article  Google Scholar 

  68. Cicco A D. Phase transitions in confined gallium droplets. Phys Rev Lett, 1998, 81: 2 942–2 945

    Article  Google Scholar 

  69. Wang L, Liu J. Discontinuous structural phase transition of liquid metal and alloys. Phys Lett A, 2004, 328: 241–245

    Article  Google Scholar 

  70. Zhang Y N, Wang L, Wang W M, et al. Structural trnasition of sheared-liquid metal in quenching state. Phys Lett A, 2006, 355: 142–147

    Article  Google Scholar 

  71. Prabhu K N, Ravishankar B N. Effect of modification metal treatment on casting/chill interfacial heat transfer and electrical conductivity of Al-13% Si alloy. Materials Science and Engineering A, 2003, 360: 293–298

    Article  Google Scholar 

  72. Shim J H, Lee S C, Lee B J, et al. Molecular dynamics simulation of the crystallization of a liquid gold nanoparticle. J Cryst Growth 2003, 250: 558–564

    Article  Google Scholar 

  73. Li H, Bian X, Wang G. Molecular dynamics computation of the liquid structure of Fe50Al50 alloy. Mat Sci Eng A-Struct, 2001, 298: 245–250

    Article  Google Scholar 

  74. Chen X S, Zhao J J, Sun Q. Surface thermal stability of nickel clusters. Phys Status Solidi B, 1996, 193(2): 355–361

    Article  Google Scholar 

  75. Ercolessi F, Andreoni W, Tosatti E. Melting of small gold particles: Mechanism and size effects. Phys Rev Lett, 1991, 66: 911–914

    Article  Google Scholar 

  76. Jellinek J, Beck T L, Berry R S. Solid-liquid phase changes in simulated isoenergetic Ar13. J Chem Phys, 1986, 84: 2 783–2 794

    Article  Google Scholar 

  77. Labastie P, Whetten R L. Statistical thermodynamics of the cluster solid-liquid transition. Phys Rev Lett, 1990, 65(13): 1 567–1 570

    Article  Google Scholar 

  78. Hattori T, Kinoshita T, Taga N, et al. Pressure and temperature dependence of the structure of liquid InSb. Phys Rev B, 2005, 72: 064205

    Google Scholar 

  79. Zhou X W, Chen J Y. Overview on viscosity of liquid metals. Journal of Shenyang Normal University (Natural Science Edition), 2003, 21(4): 255–259 (in Chinese)

    Google Scholar 

  80. Prokhorenko S V. Structure and viscosity of gallium, indium, and tin in the vincinity of the crystallization temperature. Materials Science, 2005, 41: 271–274

    Article  Google Scholar 

  81. Kang S K, Buchwalter S, Tsang C. Characterization of electroplated bismuth-tin alloys for electrically conducting materials. J Electron Mater, 2000, 29: 1 278–1 283

    Article  Google Scholar 

  82. Kang S K, Buchwalter S, LaBianca N C, et al. Development of conductive adhesive materials for via fill applications. IEEE Trans Compon Pack Technol, 2001, 24: 431–435

    Article  Google Scholar 

  83. Palmer M, Erdman N S, Mccall D A. Forming high temperature solder joints through liquid phase sintering of solder. J Electron Mater, 1999, 28: 1 189–1 195

    Google Scholar 

  84. Murakoshi Y, Shimizu T, Takagi H, et al. Si based multi-layered pint circuit board for MEMS packaging fabricated by Si deep etching, bonding and metal power injection. SPIE Proc, 2001, 4 408: 502–509

    Article  Google Scholar 

  85. Kathuria Y P. 3D microstructuring by selective laser sintering/microcladding of metallic powder. SPIE Proc, 1999, 3822: 103–109

    Article  Google Scholar 

  86. Shen J, Xie Z, Zhou B, et al. Characteristics and microstructure of a hypereutectic Al-Si alloy powder by ultrasonic gas atomization process. J Mater Sci Technol, 2001, 17: 79–80

    Google Scholar 

  87. Zhang S G, Yang B C, Yang B, et al. A novel ultrasonic atomization process for producing spherical powder. Acta Metall Sinica, 2002, 38: 888–892

    Google Scholar 

  88. Ghoshal U, Grimm D, Ibrani S, et al. High-performance liquid metal cooling loops. In: Proceedings of the 21th IEEE Semiconductor Thermal Measurement and Management Symposium, San Jose, USA: IEEE, 2005, 16–19

    Chapter  Google Scholar 

  89. Liu G Y, Tan H D. Gallium and gallium compounds. In: Cyclopaedia of Chemical Engineering: Metallurgy and Metallic Materials. Beijing: Chemical Industry Press, 1994, 329–335 (in Chinese)

    Google Scholar 

  90. Schormann M, Klimek K S, Hatop H, et al. Sodium-potassium alloy for the reduction of monoalkyl aluminum (III) compounds. J Solid State Chem, 2001, 162: 225–236

    Article  Google Scholar 

  91. Baldwin D F, Deshmukh R D, Hau C S. Gallium alloy interconnects for flip-chip assembly applications. IEEE Trans Compon Pack Technol, 2000, 23: 360–366

    Article  Google Scholar 

  92. Willis K L, Abell A B, Lange D A. Image-based characterization of cement pore structure using wood’s metal intrusion. Cement and Concrete Research, 1998, 28: 1,695–1,705

    Article  Google Scholar 

  93. Ma K Q, Liu J. Nano liquid-metal fluid as ultimate coolant. Physics Letters A, 2007, 361: 252–256

    Article  MATH  Google Scholar 

  94. Maxwell J C. A Treatise on Electricity and Magnetism, Cambridge: Oxford Univ Press, 1904

    Google Scholar 

  95. Eastman J A, Choi S U S, Li S, et al. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Applied Physics Letters, 2001, 78: 718–720

    Article  Google Scholar 

  96. Lu S, Lin H. Effective conductivity of composites containing aligned spheroidal inclusions of finite conductivity. J Appl Phys, 1996, 79: 6 761–6 769

    Google Scholar 

  97. Eastman J A, Phillpot S R, Choi S U S, et al. Thermal transport in nanofluids. Annu Rev Mater Res, 2004, 34: 219–246

    Article  Google Scholar 

  98. Mohseni, Effective cooling of integrated circuits using liquid alloy electrowetting. In: Proceedings of the 21th IEEE Semiconductor Thermal Measurement and Management Symposium, San Jose, USA: IEEE, 2005, 20–25

    Chapter  Google Scholar 

  99. NanoCoolers puts liquid metal in your PC. In: http://www.techpowerup.com/?3105 2007, last accessed 28/3/2007

  100. Ma K Q, Liu J. Heat driven liquid metal cooling device for the thermal management of computer chip. J Phys D: Appl Phys, 2007, 40: 4 722–4 729

    Google Scholar 

  101. Cooney C G, Chen C Y, Emerling M R, et al. Electrowetting droplet microfluidics on a single planar surface. Microfluidcs and Nanofluidics, 2006, 2: 435–446

    Article  Google Scholar 

  102. Lee J, Kim C J. Surface-tension-driven microactuation based on continuous electrowetting. J Microelectromech Syst, 2000, 9: 171–180

    Article  MATH  Google Scholar 

  103. Lee Y B, Chang W P, Kwon Y M, et al. Development of a twodimensional model for the thermohydraulic analysis of the hot pool in liquid metal reactors. Ann Nucl Energy, 2002, 29: 21–40

    Article  Google Scholar 

  104. Xuan Y, Roetzel W. Conceptions for heat transfer correlation of nanofluids. Int J Heat Mass Transfer, 2000, 43: 3 701–3 707

    Article  Google Scholar 

  105. Lyon R N. Liquid metal heat-transfer coefficients. Chem Eng Prog, 1951, 47: 75–79

    Google Scholar 

  106. Yu J Y, Jia B S. Thermal Hydrodynamics for Reactors. Beijing: Tsinghua University Press, 2003 (in Chinese)

    Google Scholar 

  107. Yang S M, Tao W Q. Heat Transfer. Beijing: Higher Education Press, 1998 (in Chinese)

    Google Scholar 

  108. Yan J F, Liu J. Evaluation on the performance of liquid metal cooling chip based on compartment model. In: Proceedings of China Association of Engineering Thermophysics Symposium on Heat and Mass Transfer, Beijing, China: Association of: Engineering Thermophysics, 2005, 1,588–1,592 (in Chinese)

    Google Scholar 

  109. Furman B K, Gelorme J D, Labianca N C. Thermal interface for facilitating thermal contact between integrated circuit chip surface and heat sink surface, comprises liquid metal layer and barrier layers. US patent, US2006131738-A1, 2006

  110. Silverman I, Yarin A L, Reznik S N, et al. High heat-flux accelerator targets: Cooling with liquid metal jet impingement. Int J Heat Mass Transfer, 2006, 49: 2 782–2 792

    Article  Google Scholar 

  111. Zhang C, Eckert S, Gerbeth G. Experimental study of single bubble motion in a liquid metal column exposed to a DC magnetic field. Int J Multiphas Flow, 2005, 31: 824–842

    Article  MATH  Google Scholar 

  112. Yeliseyev O I, Chernov V M, Tsaran T V. Kinetic features of the component interaction in the V[O]-Li[Ca] system. J Nucl Mater, 2002, 307–311: 1 400–1 404

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Jing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, K., Liu, J. Liquid metal cooling in thermal management of computer chips. Front. Energy Power Eng. China 1, 384–402 (2007). https://doi.org/10.1007/s11708-007-0057-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11708-007-0057-3

Keywords

Navigation