Skip to main content

Advertisement

Log in

Metal-organic frameworks for CO2 photoreduction

  • Review Article
  • Published:
Frontiers in Energy Aims and scope Submit manuscript

Abstract

Metal-organic frameworks (MOFs) have attracted much attention because of their large surface areas, tunable structures, and potential applications in many areas. In recent years, MOFs have shown much promise in CO2 photoreduction. This review summarized recent research progresses in MOF-based photocatalysts for photocatalytic reduction of CO2. Besides, it discussed strategies in rational design of MOF-based photocatalysts (functionalized pristine MOFs, MOF-photosensitizer, MOF-semiconductor, MOF-metal, and MOF-carbon materials composites) with enhanced performance on CO2 reduction. Moreover, it explored challenges and outlook on using MOF-based photocatalysts for CO2 reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pearson P N, Palmer M R. Atmospheric carbon dioxide concentrations over the past 60 million years. Nature, 2000, 406 (6797): 406695

    Article  Google Scholar 

  2. Quadrelli R, Peterson S. The energy–climate challenge: recent trends in CO2 emissions from fuel combustion. Energy Policy, 2007, 35(11): 5938–5952

    Article  Google Scholar 

  3. Song C. CO2 conversion and utilization: an overview. In: Song C, eds. CO2 Conversion and Utilization. Washington, DC: ACS Symposium Series, 2002, 809, 2–30

  4. Herzog H J, Drake E M. Carbon dioxide recovery and disposal from large energy systems. Annual Review of Energy and the Environment, 1996, 21(1): 145–166

    Article  Google Scholar 

  5. Muradov N. Industrial Utilization of CO2: A Win–Win Solution. New York: Springer New York, 2014, 325–383

    Google Scholar 

  6. Rafiee A, Rajab Khalilpour K, Milani D, Panahi M. Trends in CO2 conversion and utilization: a review from process systems perspective. Journal of Environmental Chemical Engineering, 2018, 6(5): 5771–5794

    Article  Google Scholar 

  7. Wang B, Chen W, Song Y, Li G, Wei W, Fang J, Sun Y. Recent progress in the photocatalytic reduction of aqueous carbon dioxide. Catalysis Today, 2018, 311: 23–39

    Article  Google Scholar 

  8. Yu Y, Zheng W, Cao Y. TiO2–Pd/C composited photocatalyst with improved photocatalytic activity for photoreduction of CO2 into CH4. New Journal of Chemistry, 2017, 41(8): 3204–3210

    Article  Google Scholar 

  9. Sneddon G, Greenaway A, Yiu H H P. The potential applications of nanoporous materials for the adsorption, separation, and catalytic conversion of carbon dioxide. Advanced Energy Materials, 2014, 4(10): 1301873

    Article  Google Scholar 

  10. North M, Pasquale R, Young C. Synthesis of cyclic carbonates from epoxides and CO2. Green Chemistry, 2010, 12(9): 1514–1539

    Article  Google Scholar 

  11. Li W, Wang H, Jiang X, Zhu J, Liu Z, Guo X, Song C. A short review of recent advances in CO2 hydrogenation to hydrocarbons over heterogeneous catalysts. RSC Advances, 2018, 8(14): 7651–7669

    Article  Google Scholar 

  12. Raciti D, Wang C. Recent advances in CO2 reduction electro-catalysis on copper. ACS Energy Letters, 2018, 3(7): 1545–1556

    Article  Google Scholar 

  13. Tahir M, Amin N S. Advances in visible light responsive titanium oxide-based photocatalysts for CO2 conversion to hydrocarbon fuels. Energy Conversion and Management, 2013, 76: 194–214

    Article  Google Scholar 

  14. Matsubara Y, Grills D C, Kuwahara Y. Thermodynamic aspects of electrocatalytic CO2 reduction in acetonitrile and with an ionic liquid as solvent or electrolyte. ACS Catalysis, 2015, 5(11): 6440–6452

    Article  Google Scholar 

  15. Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358): 23837

    Article  Google Scholar 

  16. Wang M, Ioccozia J, Sun L, Lin C, Lin Z. Inorganic-modified semiconductor TiO2 nanotube arrays for photocatalysis. Energy & Environmental Science, 2014, 7(7): 2182–2202

    Article  Google Scholar 

  17. Bao N, Shen L, Takata T, Domen K. Self-templated synthesis of nanoporous CdS nanostructures for highly efficient photocatalytic hydrogen production under visible light. Chemistry of Materials, 2008, 20(1): 110–117

    Article  Google Scholar 

  18. Ong C B, Ng L Y, Mohammad A W. A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications. Renewable & Sustainable Energy Reviews, 2018, 81: 536–551

    Article  Google Scholar 

  19. Lee G J, Wu J J. Recent developments in ZnS photocatalysts from synthesis to photocatalytic applications—a review. Powder Technology, 2017, 318: 8–22

    Article  Google Scholar 

  20. Mishra M, Chun D M. α-Fe2O3 as a photocatalytic material: a review. Applied Catalysis A, General, 2015, 498: 126–141

    Article  Google Scholar 

  21. Wen J, Xie J, Chen X, Li X. A review on g-C3N4-based photocatalysts. Applied Surface Science, 2017, 391: 72–123

    Article  Google Scholar 

  22. Luo L, Li Y, Hou J, Yang Y. Visible photocatalysis and photostability of Ag3PO4 photocatalyst. Applied Surface Science, 2014, 319: 332–338

    Article  Google Scholar 

  23. Dong C, Lian C, Hu S, Deng Z, Gong J, Li M, Liu H, Xing M, Zhang J. Size-dependent activity and selectivity of carbon dioxide photocatalytic reduction over platinum nanoparticles. Nature Communications, 2018, 9(1): 1252

    Article  Google Scholar 

  24. Xing M, Zhou Y, Dong C, Cai L, Zeng L, Shen B, Pan L, Dong C, Chai Y, Zhang J, Yin Y. Modulation of the reduction potential of TiO2−x by fluorination for efficient and selective CH4 generation from CO2 photoreduction. Nano Letters, 2018, 18(6): 3384–3390

    Article  Google Scholar 

  25. Zhang H, Liu G, Shi L, Liu H, Wang T, Ye J. Engineering coordination polymers for photocatalysis. Nano Energy, 2016, 22: 149–168

    Article  Google Scholar 

  26. Meissner D, Memming R, Kastening B. Photoelectrochemistry of cadmium sulfide. 1. Reanalysis of photocorrosion and flat-band potential. Journal of Physical Chemistry, 1988, 92(12): 3476–3483

    Article  Google Scholar 

  27. Bahnemann D W, Kormann C, Hoffmann M R. Preparation and characterization of quantum size zinc oxide: a detailed spectroscopic study. Journal of Physical Chemistry, 1987, 91(14): 3789–3798

    Article  Google Scholar 

  28. Zhang L, Hu Y H. Desorption of dimethylformamide from Zn4O (C8H4O4)3 framework. Applied Surface Science, 2011, 257(8): 3392–3398

    Article  Google Scholar 

  29. Hu Y H, Zhang L. Amorphization of metal-organic framework MOF-5 at unusually low applied pressure. Physical Review. B, 2010, 81(17): 174103

    Article  Google Scholar 

  30. Zhang L, Hu Y H. A systematic investigation of decomposition of nano Zn4O(C8H4O4)3 metal–organic framework. Journal of Physical Chemistry C, 2010, 114(6): 2566–2572

    Article  Google Scholar 

  31. Zhang L, Hu Y H. Strong effects of higher-valent cations on the structure of the zeolitic Zn(2-methylimidazole)2 framework (ZIF-8). Journal of Physical Chemistry C, 2011, 115(16): 7967–7971

    Article  Google Scholar 

  32. Zhang L, Hu Y H. Structure distortion of Zn4O13C24H12 framework (MOF-5). Materials Science and Engineering B, 2011, 176(7): 573–578

    Article  Google Scholar 

  33. Zhang L, Hu Y H. Observation of ZnO nanoparticles outside pores of nano Zn4O(C8H4O4)3 metal–organic framework. Physics Letters [Part A], 2011, 375(13): 1514–1517

    Article  Google Scholar 

  34. Loera-Serna S, Zarate-Rubio J, Medina-Velazquez D Y, Zhang L, Ortiz E. Encapsulation of urea and caffeine in Cu3(BTC)2 metal–organic framework. Surface Innovations, 2016, 4(2): 76–87

    Article  Google Scholar 

  35. Hu Y H, Zhang L. Hydrogen storage in metal–organic frameworks. Advanced Materials, 2010, 22(20): E117–E130

    Article  Google Scholar 

  36. Zhang T, Lin W. Metal–organic frameworks for artificial photosynthesis and photocatalysis. Chemical Society Reviews, 2014, 43(16): 5982–5993

    Article  Google Scholar 

  37. Wu M X, Yang Y W. Metal–organic framework (MOF)-based drug/cargo delivery and cancer therapy. Advanced Materials, 2017, 29(23): 1606134

    Article  Google Scholar 

  38. Chowdhury T, Zhang L, Zhang J, Aggarwal S. Removal of arsenic (III) from aqueous solution using metal organic framework-graphene oxide nanocomposite. Nanomaterials (Basel, Switzerland), 2018, 8(12): 1062

    Article  Google Scholar 

  39. Kreno L E, Leong K, Farha O K, Allendorf M, Van Duyne R P, Hupp J T. Metal–organic framework materials as chemical sensors. Chemical Reviews, 2012, 112(2): 1105–1125

    Article  Google Scholar 

  40. Wang Y, Huang N Y, Shen J Q, Liao P Q, Chen X M, Zhang J P. Hydroxide ligands cooperate with catalytic centers in metal–organic frameworks for efficient photocatalytic CO2 reduction. Journal of the American Chemical Society, 2018, 140(1): 38–41

    Article  Google Scholar 

  41. He J, Zhang Y, He J, Zeng X, Hou X, Long Z. Enhancement of photoredox catalytic properties of porphyrinic metal–organic frameworks based on titanium incorporation via post-synthetic modification. Chemical Communications, 2018, 54(62): 8610–8613

    Article  Google Scholar 

  42. Horiuchi Y, Toyao T, Saito M, Mochizuki K, Iwata M, Higashimura H, Anpo M, Matsuoka M. Visible-light-promoted photocatalytic hydrogen production by using an amino-functionalized Ti(IV) metal–organic framework. Journal of Physical Chemistry C, 2012, 116(39): 20848–20853

    Article  Google Scholar 

  43. Maina J W, Pozo-Gonzalo C, Kong L, Schütz J, Hill M, Dumée L F. Metal organic framework based catalysts for CO2 conversion. Materials Horizons, 2017, 4(3): 345–361

    Article  Google Scholar 

  44. Nasalevich M A, Goesten M G, Savenije T J, Kapteijn F, Gascon J. Enhancing optical absorption of metal–organic frameworks for improved visible light photocatalysis. Chemical Communications, 2013, 49(90): 10575–10577

    Article  Google Scholar 

  45. Jiang D, Mallat T, Krumeich F, Baiker A. Copper-based metal-organic framework for the facile ring-opening of epoxides. Journal of Catalysis, 2008, 257(2): 390–395

    Article  Google Scholar 

  46. Hasegawa S, Horike S, Matsuda R, Furukawa S, Mochizuki K, Kinoshita Y, Kitagawa S. Three-dimensional porous coordination polymer functionalized with amide groups based on tridentate ligand: selective sorption and catalysis. Journal of the American Chemical Society, 2007, 129(9): 2607–2614

    Article  Google Scholar 

  47. Wang J L, Wang C, Lin W. Metal–organic frameworks for light harvesting and photocatalysis. ACS Catalysis, 2012, 2(12): 2630–2640

    Article  Google Scholar 

  48. Llabrés i Xamena F X, Casanova O, Galiasso Tailleur R, Garcia H, Corma A. Metal organic frameworks (MOFs) as catalysts: a combination of Cu2+ and Co2+ MOFs as an efficient catalyst for tetralin oxidation. Journal of Catalysis, 2008, 255(2): 220–227

    Article  Google Scholar 

  49. Llabrés i Xamena F X, Corma A, Garcia H. Applications for metal–organic frameworks (MOFs) as quantum dot semiconductors. Journal of Physical Chemistry C, 2007, 111(1): 80–85

    Article  Google Scholar 

  50. Gao J, Miao J, Li P Z, Teng W Y, Yang L, Zhao Y, Liu B, Zhang Q. A p-type Ti(iv)-based metal–organic framework with visible-light photo-response. Chemical Communications, 2014, 50(29): 3786–3788

    Article  Google Scholar 

  51. Shen L, Liang S, Wu W, Liang R, Wu L. CdS-decorated UiO-66 (NH2) nanocomposites fabricated by a facile photodeposition process: an efficient and stable visible-light-driven photocatalyst for selective oxidation of alcohols. Journal of Materials Chemistry. A, 2013, 1(37): 11473–11482

    Article  Google Scholar 

  52. Ryu U J, Kim S J, Lim H K, Kim H, Choi K M, Kang J K. Synergistic interaction of Re complex and amine functionalized multiple ligands in metal-organic frameworks for conversion of carbon dioxide. Scientific Reports, 2017, 7(1): 612

    Article  Google Scholar 

  53. Fu Y, Sun D, Chen Y, Huang R, Ding Z, Fu X, Li Z. An amine-functionalized titanium metal–organic framework photocatalyst with visible-light-induced activity for CO2 reduction. Angewandte Chemie International Edition, 2012, 51(14): 3364–3367

    Article  Google Scholar 

  54. Yan S, Ouyang S, Xu H, Zhao M, Zhang X, Ye J. Co-ZIF-9/TiO2 nanostructure for superior CO2 photoreduction activity. Journal of Materials Chemistry. A, 2016, 4(39): 15126–15133

    Article  Google Scholar 

  55. Su Y, Zhang Z, Liu H, Wang Y. Cd0.2Zn0.8S@UiO-66–NH2 nanocomposites as efficient and stable visible-light-driven photocatalyst for H2 evolution and CO2 reduction. Applied Catalysis B: Environmental, 2017, 200: 448–457

    Article  Google Scholar 

  56. Liu S, Chen F, Li S, Peng X, Xiong Y. Enhanced photocatalytic conversion of greenhouse gas CO2 into solar fuels over g-C3N4 nanotubes with decorated transparent ZIF-8 nanoclusters. Applied Catalysis B: Environmental, 2017, 211: 1–10

    Article  Google Scholar 

  57. Wang S, Yao W, Lin J, Ding Z, Wang X. Cobalt imidazolate metal–organic frameworks photosplit CO2 under mild reaction conditions. Angewandte Chemie International Edition, 2014, 53(4): 1034–1038

    Article  Google Scholar 

  58. Fei H, Sampson M D, Lee Y, Kubiak C P, Cohen S M. Photocatalytic CO2 reduction to formate using a Mn(I) molecular catalyst in a robust metal–organic framework. Inorganic Chemistry, 2015, 54(14): 6821–6828

    Article  Google Scholar 

  59. Qin J, Wang S, Wang X. Visible-light reduction CO2 with dodecahedral zeolitic imidazolate framework ZIF-67 as an efficient co-catalyst. Applied Catalysis B: Environmental, 2017, 209: 476–482

    Article  Google Scholar 

  60. Huang Y B, Liang J, Wang X S, Cao R. Multifunctional metal–organic framework catalysts: synergistic catalysis and tandem reactions. Chemical Society Reviews, 2017, 46(1): 126–157

    Article  Google Scholar 

  61. Wang S, Wang X. Multifunctional metal–organic frameworks for photocatalysis. Small, 2015, 11(26): 3097–3112

    Article  Google Scholar 

  62. Yu X, Wang L, Cohen S M. Photocatalytic metal–organic frameworks for organic transformations. CrystEngComm, 2017, 19(29): 4126–4136

    Article  Google Scholar 

  63. Navarro Amador R, Carboni M, Meyer D. Photosensitive titanium and zirconium metal organic frameworks: current research and future possibilities. Materials Letters, 2016, 166: 327–338

    Article  Google Scholar 

  64. Liang Z, Qu C, Guo W, Zou R, Xu Q. Pristine metal–organic frameworks and their composites for energy storage and conversion. Advanced Materials, 2018, 30(37): 1702891

    Article  Google Scholar 

  65. Sun D, Li Z. Robust Ti- and Zr-based metal-organic frameworks for photocatalysis. Chinese Journal of Chemistry, 2017, 35(2): 135–147

    Article  Google Scholar 

  66. Shen L, Liang R, Wu L. Strategies for engineering metal-organic frameworks as efficient photocatalysts. Chinese Journal of Catalysis, 2015, 36(12): 2071–2088

    Article  Google Scholar 

  67. Zhu J, Li P Z, Guo W, Zhao Y, Zou R. Titanium-based metal–organic frameworks for photocatalytic applications. Coordination Chemistry Reviews, 2018, 359: 80–101

    Article  Google Scholar 

  68. Santaclara J G, Kapteijn F, Gascon J, van der Veen M A. Understanding metal–organic frameworks for photocatalytic solar fuel production. CrystEngComm, 2017, 19(29): 4118–4125

    Article  Google Scholar 

  69. Nasalevich M A, van der Veen M, Kapteijn F, Gascon J. Metal–organic frameworks as heterogeneous photocatalysts: advantages and challenges. CrystEngComm, 2014, 16(23): 4919–4926

    Article  Google Scholar 

  70. Song F, Li W, Sun Y. Metal–organic frameworks and their derivatives for photocatalytic water splitting. Inorganics, 2017, 5(3): 40

    Article  Google Scholar 

  71. Wang W, Xu X, Zhou W, Shao Z. Recent progress inmetal-organic frameworks for applications in electrocatalytic and photocatalytic water splitting. Advancement of Science, 2017, 4(4): 1600371

    Google Scholar 

  72. Yan Y, He T, Zhao B, Qi K, Liu H, Xia B Y. Metal/covalen–organic frameworks-based electrocatalysts for water splitting. Journal of Materials Chemistry. A, 2018, 6(33): 15905–15926

    Article  Google Scholar 

  73. Meyer K, Ranocchiari M, van Bokhoven J A. Metal organic frameworks for photo-catalytic water splitting. Energy & Environmental Science, 2015, 8(7): 1923–1937

    Article  Google Scholar 

  74. Pi Y, Li X, Xia Q, Wu J, Li Y, Xiao J, Li Z. Adsorptive and photocatalytic removal of persistent organic pollutants (POPs) in water by metal-organic frameworks (MOFs). Chemical Engineering Journal, 2018, 337: 351–371

    Article  Google Scholar 

  75. Wu Z, Yuan X, Zhang J, Wang H, Jiang L, Zeng G. Photocatalytic decontamination of wastewater containing organic dyes by metal–organic frameworks and their derivatives. ChemCatChem, 2017, 9 (1): 41–64

    Article  Google Scholar 

  76. Wang C C, Li J R, Lv X L, Zhang Y Q, Guo G. Photocatalytic organic pollutants degradation in metal–organic frameworks. Energy & Environmental Science, 2014, 7(9): 2831–2867

    Article  Google Scholar 

  77. Jiang D, Xu P, Wang H, Zeng G, Huang D, Chen M, Lai C, Zhang C, Wan J, Xue W. Strategies to improve metal organic frameworks photocatalyst’s performance for degradation of organic pollutants. Coordination Chemistry Reviews, 2018, 376: 449–466

    Article  Google Scholar 

  78. Dhakshinamoorthy A, Li Z, Garcia H. Catalysis and photocatalysis by metal organic frameworks. Chemical Society Reviews, 2018, 47(22): 8134–8172

    Article  Google Scholar 

  79. Zhu B, Zou R, Xu Q. Metal–organic framework based catalysts for hydrogen evolution. Advanced Energy Materials, 2018, 8(24): 1801193

    Article  Google Scholar 

  80. Fang Y, Ma Y, Zheng M, Yang P, Asiri A M, Wang X. Metal–organic frameworks for solar energy conversion by photoredox catalysis. Coordination Chemistry Reviews, 2018, 373: 83–115

    Article  Google Scholar 

  81. Chen Y, Wang D, Deng X, Li Z. Metal–organic frameworks (MOFs) for photocatalytic CO2 reduction. Catalysis Science & Technology, 2017, 7(21): 4893–4904

    Article  Google Scholar 

  82. Li Y, Xu H, Ouyang S, Ye J. Metal–organic frameworks for photocatalysis. Physical Chemistry Chemical Physics, 2016, 18 (11): 7563–7572

    Article  Google Scholar 

  83. Li R, Zhang W, Zhou K. Metal–organic-framework-based catalysts for photoreduction of CO2. Advanced Materials, 2018, 30(35): 1705512

    Article  Google Scholar 

  84. Wang C C, Zhang Y Q, Li J, Wang P. Photocatalytic CO2 reduction in metal–organic frameworks: a mini review. Journal of Molecular Structure, 2015, 1083: 127–136

    Article  Google Scholar 

  85. Qiu J, Zhang X, Feng Y, Zhang X, Wang H, Yao J. Modified metal-organic frameworks as photocatalysts. Applied Catalysis B: Environmental, 2018, 231: 317–342

    Article  Google Scholar 

  86. Gascon J, Hernández-Alonso M D, Almeida A R, van Klink G P M, Kapteijn F, Mul G. Isoreticular MOFs as efficient photocatalysts with tunable band gap: an operando FTIR study of the photoinduced oxidation of propylene. ChemSusChem, 2008, 1 (12): 981–983

    Article  Google Scholar 

  87. Barkhordarian A A, Kepert C J. Two new porous UiO-66-type zirconium frameworks: open aromatic N-donor sites and their post-synthetic methylation and metallation. Journal of Materials Chemistry. A, 2017, 5(11): 5612–5618

    Article  Google Scholar 

  88. Hendon C H, Tiana D, Fontecave M, Sanchez C, D’arras L, Sassoye C, Rozes L, Mellot-Draznieks C, Walsh A. Engineering the optical response of the Titanium-MIL-125 metal–organic framework through ligand functionalization. Journal of the American Chemical Society, 2013, 135(30): 10942–10945

    Article  Google Scholar 

  89. Pham H Q, Mai T, Pham-Tran N N, Kawazoe Y, Mizuseki H, Nguyen-Manh D. Engineering of band gap in metal–organic frameworks by functionalizing organic linker: a systematic density functional theory investigation. Journal of Physical Chemistry C, 2014, 118(9): 4567–4577

    Article  Google Scholar 

  90. Yang H, He X W, Wang F, Kang Y, Zhang J. Doping copper into ZIF-67 for enhancing gas uptake capacity and visible-light-driven photocatalytic degradation of organic dye. Journal of Materials Chemistry, 2012, 22(41): 21849–21851

    Article  Google Scholar 

  91. Yang L M, Fang G Y, Ma J, Pushpa R, Ganz E. Halogenated MOF-5 variants show new configuration, tunable band gaps and enhanced optical response in the visible and near infrared. Physical Chemistry Chemical Physics, 2016, 18(47): 32319–32330

    Article  Google Scholar 

  92. Nguyen H L, Vu T T, Le D, Doan T L H, Nguyen V Q, Phan N T S. A Titanium–organic framework: engineering of the band-gap energy for photocatalytic property enhancement. ACS Catalysis, 2017, 7(1): 338–342

    Article  Google Scholar 

  93. Sun D, Fu Y, Liu W, Ye L, Wang D, Yang L, Fu X, Li Z. Studies on photocatalytic CO2 reduction over NH2-Uio-66(Zr) and its derivatives: towards a better understanding of photocatalysis on metal–organic frameworks. Chemistry–A European Journal, 2013, 19(42): 14279–14285

    Article  Google Scholar 

  94. Lee Y, Kim S, Kang J K, Cohen S M. Photocatalytic CO2 reduction by a mixed metal (Zr/Ti), mixed ligand metal–organic framework under visible light irradiation. Chemical Communications, 2015, 51(26): 5735–5738

    Article  Google Scholar 

  95. Wang D, Huang R, Liu W, Sun D, Li Z. Fe-based MOFs for photocatalytic CO2 reduction: role of coordination unsaturated sites and dual excitation pathways. ACS Catalysis, 2014, 4(12): 4254–4260

    Article  Google Scholar 

  96. Sun D, Liu W, Qiu M, Zhang Y, Li Z. Introduction of a mediator for enhancing photocatalytic performance via post-synthetic metal exchange in metal–organic frameworks (MOFs). Chemical Communications, 2015, 51(11): 2056–2059

    Article  Google Scholar 

  97. Liu J, Fan Y Z, Li X, Wei Z, Xu Y W, Zhang L, Su C Y. A porous rhodium(III)-porphyrin metal-organic framework as an efficient and selective photocatalyst for CO2 reduction. Applied Catalysis B: Environmental, 2018, 231: 173–181

    Article  Google Scholar 

  98. Sadeghi N, Sharifnia S, Sheikh Arabi M. A porphyrin-based metal organic framework for high rate photoreduction of CO2 to CH4 in gas phase. Journal of CO2 Utilization, 2016, 16: 450–457

    Article  Google Scholar 

  99. Liu Y, Yang Y, Sun Q, Wang Z, Huang B, Dai Y, Qin X, Zhang X. Chemical adsorption enhanced CO2 capture and photoreduction over a copper porphyrin based metal organic framework. ACS Applied Materials & Interfaces, 2013, 5(15): 7654–7658

    Article  Google Scholar 

  100. Zhang H, Wei J, Dong J, Liu G, Shi L, An P, Zhao G, Kong J, Wang X, Meng X, Zhang J, Ye J. Efficient visible-light-driven carbon dioxide reduction by a single-atom implanted metal–organic framework. Angewandte Chemie International Edition, 2016, 55(46): 14310–14314

    Article  Google Scholar 

  101. Xu H Q, Hu J, Wang D, Li Z, Zhang Q, Luo Y, Yu S H, Jiang H L. Visible-light photoreduction of CO2 in a metal–organic frame-work: boosting electron–hole separation via electron trap states. Journal of the American Chemical Society, 2015, 137(42): 13440–13443

    Article  Google Scholar 

  102. Yan Z H, Du M H, Liu J, Jin S, Wang C, Zhuang G L, Kong X J, Long L S, Zheng L S. Photo-generated dinuclear {Eu(II)}2 active sites for selective CO2 reduction in a photosensitizing metal-organic framework. Nature Communications, 2018, 9(1): 3353

    Article  Google Scholar 

  103. Wang C, Xie Z, deKrafft K E, Lin W. Doping metal–organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. Journal of the American Chemical Society, 2011, 133(34): 13445–13454

    Article  Google Scholar 

  104. Huang R, Peng Y, Wang C, Shi Z, Lin W. A rhenium-functionalized metal–organic framework as a single-site catalyst for photochemical reduction of carbon dioxide. European Journal of Inorganic Chemistry, 2016, 2016(27): 4358–4362

    Article  Google Scholar 

  105. Chambers M B, Wang X, Elgrishi N, Hendon C H, Walsh A, Bonnefoy J, Canivet J, Quadrelli E A, Farrusseng D, Mellot-Draznieks C, Fontecave M. Photocatalytic carbon dioxide reduction with rhodium-based catalysts in solution and heterogenized within metal–organic frameworks. ChemSusChem, 2015, 8(4): 603–608

    Article  Google Scholar 

  106. Sun D, Gao Y, Fu J, Zeng X, Chen Z, Li Z. Construction of a supported Ru complex on bifunctional MOF-253 for photocatalytic CO2 reduction under visible light. Chemical Communications, 2015, 51(13): 2645–2648

    Article  Google Scholar 

  107. Li L, Zhang S, Xu L, Wang J, Shi L X, Chen Z N, Hong M, Luo J. Effective visible-light driven CO2 photoreduction via a promising bifunctional iridium coordination polymer. Chemical Science (Cambridge), 2014, 5(10): 3808–3813

    Article  Google Scholar 

  108. Zhang S, Li L, Zhao S, Sun Z, Hong M, Luo J. Hierarchical metal–organic framework nanoflowers for effective CO2 transformation driven by visible light. Journal of Materials Chemistry. A, 2015, 3 (30): 15764–15768

    Article  Google Scholar 

  109. Zhang S, Li L, Zhao S, Sun Z, Luo J. Construction of interpenetrated ruthenium metal–organic frameworks as stable photocatalysts for CO2 reduction. Inorganic Chemistry, 2015, 54(17): 8375–8379

    Article  Google Scholar 

  110. Lee Y, Kim S, Fei H, Kang J K, Cohen S M. Photocatalytic CO2 reduction using visible light by metal-monocatecholato species in a metal–organic framework. Chemical Communications, 2015, 51(92): 16549–16552

    Article  Google Scholar 

  111. Chen D, Xing H, Wang C, Su Z. Highly efficient visible-light-driven CO2 reduction to formate by a new anthracene-based zirconium MOF via dual catalytic routes. Journal of Materials Chemistry. A, 2016, 4(7): 2657–2662

    Article  Google Scholar 

  112. Schaate A, Roy P, Godt A, Lippke J, Waltz F, Wiebcke M, Behrens P. Modulated synthesis of Zr-based metal–organic frameworks: from nano to single crystals. Chemistry–A European Journal, 2011, 17(24): 6643–6651

    Article  Google Scholar 

  113. Gomes Silva C, Luz I, Llabrés i Xamena F X, Corma A, García H. Water stable Zr–benzenedicarboxylate metal–organic frameworks as photocatalysts for hydrogen generation. Chemistry–A European Journal, 2010, 16(36): 11133–11138

    Article  Google Scholar 

  114. Cavka J H, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud K P. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. Journal of the American Chemical Society, 2008, 130(42): 13850–13851

    Article  Google Scholar 

  115. Mondloch J E, Katz M J, Planas N, Semrouni D, Gagliardi L, Hupp J T, Farha O K. Are Zr6-based MOFs water stable? Linker hydrolysis vs. capillary-force-driven channel collapse. Chemical Communications, 2014, 50(64): 8944–8946

    Article  Google Scholar 

  116. Wang C C, Du X D, Li J, Guo X X, Wang P, Zhang J. Photocatalytic Cr(VI) reduction in metal-organic frameworks: a mini-review. Applied Catalysis B: Environmental, 2016, 193: 198–216

    Article  Google Scholar 

  117. Dean J A. Lange’s handbook of chemistry. Materials and Manufacturing Processes, 1990, 5(4): 687–688

    Article  Google Scholar 

  118. Laurier K G M, Vermoortele F, Ameloot R, De Vos D E, Hofkens J, Roeffaers M B J. Iron(III)-based metal–organic frameworks as visible light photocatalysts. Journal of the American Chemical Society, 2013, 135(39): 14488–14491

    Article  Google Scholar 

  119. Torrisi A, Bell R G, Mellot-Draznieks C. Functionalized MOFs for enhanced CO2 capture. Crystal Growth & Design, 2010, 10(7): 2839–2841

    Article  Google Scholar 

  120. Torrisi A, Mellot-Draznieks C, Bell R G. Impact of ligands on CO2 adsorption in metal-organic frameworks: first principles study of the interaction of CO2 with functionalized benzenes. II. Effect of polar and acidic substituents. Journal of Chemical Physics, 2010, 132(4): 044705

    Article  Google Scholar 

  121. Tamaki Y, Morimoto T, Koike K, Ishitani O. Photocatalytic CO2 reduction with high turnover frequency and selectivity of formic acid formation using Ru(II) multinuclear complexes. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(39): 15673–15678

    Article  Google Scholar 

  122. Sato S, Morikawa T, Kajino T, Ishitani O. A highly efficient mononuclear iridium complex photocatalyst for CO2 reduction under visible light. Angewandte Chemie International Edition, 2013, 52(3): 988–992

    Article  Google Scholar 

  123. Kuramochi Y, Kamiya M, Ishida H. Photocatalytic CO2 reduction in N, N-dimethylacetamide/water as an alternative solvent system. Inorganic Chemistry, 2014, 53(7): 3326–3332

    Article  Google Scholar 

  124. Huang Z, Dong P, Zhang Y, Nie X, Wang X, Zhang X. A ZIF-8 decorated TiO2 grid-like film with high CO2 adsorption for CO2 photoreduction. Journal of CO2 Utilization, 2018, 24, 369–375

    Article  Google Scholar 

  125. Cardoso J C, Stulp S, de Brito J F, Flor J B S, Frem R C G, Zanoni M V B. MOFs based on ZIF-8 deposited on TiO2 nanotubes increase the surface adsorption of CO2 and its photoelectrocatalytic reduction to alcohols in aqueous media. Applied Catalysis B: Environmental, 2018, 225: 563–573

    Article  Google Scholar 

  126. Li R, Hu J, Deng M, Wang H, Wang X, Hu Y, Jiang H L, Jiang J, Zhang Q, Xie Y, Xiong Y. Integration of an inorganic semiconductor with a metal–organic framework: a platform for enhanced gaseous photocatalytic reactions. Advanced Materials, 2014, 26(28): 4783–4788

    Article  Google Scholar 

  127. He X, Gan Z, Fisenko S, Wang D, El-Kaderi H M, Wang W N. Rapid formation of metal–organic frameworks (MOFs) based nanocomposites in microdroplets and their applications for CO2 photoreduction. ACS Applied Materials & Interfaces, 2017, 9(11): 9688–9698

    Article  Google Scholar 

  128. Wang M, Wang D, Li Z. Self-assembly of CPO-27-Mg/TiO2 nanocomposite with enhanced performance for photocatalytic CO2 reduction. Applied Catalysis B: Environmental, 2016, 183: 47–52

    Article  Google Scholar 

  129. Crake A, Christoforidis K C, Kafizas A, Zafeiratos S, Petit C. CO2 capture and photocatalytic reduction using bifunctional TiO2/MOF nanocomposites under UV–vis irradiation. Applied Catalysis B: Environmental, 2017, 210: 131–140

    Article  Google Scholar 

  130. Wang S, Wang X. Photocatalytic CO2 reduction by CdS promoted with a zeolitic imidazolate framework. Applied Catalysis B: Environmental, 2015, 162: 494–500

    Article  Google Scholar 

  131. Wang S, Lin J, Wang X. Semiconductor–redox catalysis promoted by metal–organic frameworks for CO2 reduction. Physical Chemistry Chemical Physics, 2014, 16(28): 14656–14660

    Article  Google Scholar 

  132. Shi L, Wang T, Zhang H, Chang K, Ye J. Electrostatic self-assembly of nanosized carbon nitride nanosheet onto a zirconium metal–organic framework for enhanced photocatalytic CO2 reduction. Advanced Functional Materials, 2015, 25(33): 5360–5367

    Article  Google Scholar 

  133. Xu G, Zhang H, Wei J, Zhang H X, Wu X, Li Y, Li C, Zhang J, Ye J. Integrating the g-C3N4 Nanosheet with B–H bonding decorated metal–organic framework for CO2 activation and photoreduction. ACS Nano, 2018, 12(6): 5333–5340

    Article  Google Scholar 

  134. Liu Q, Low Z X, Li L, Razmjou A, Wang K, Yao J, Wang H. ZIF-8/Zn2GeO4 nanorods with an enhanced CO2 adsorption property in an aqueous medium for photocatalytic synthesis of liquid fuel. Journal of Materials Chemistry. A, 2013, 1(38): 11563–11569

    Article  Google Scholar 

  135. Sun D, Liu W, Fu Y, Fang Z, Sun F, Fu X, Zhang Y, Li Z. Noble metals can have different effects on photocatalysis over metal–organic frameworks (MOFs): a case study on M/NH2-MIL-125(Ti) (M = Pt and Au). Chemistry–A European Journal, 2014, 20(16): 4780–4788

    Article  Google Scholar 

  136. Fu Y, Yang H, Du R, Tu G, Xu C, Zhang F, Fan M, Zhu W. Enhanced photocatalytic CO2 reduction over Co-doped NH2-MIL-125(Ti) under visible light. RSC Advances, 2017, 7(68): 42819–42825

    Article  Google Scholar 

  137. Choi K M, Kim D, Rungtaweevoranit B, Trickett C A, Barmanbek J T D, Alshammari A S, Yang P, Yaghi O M. Plasmon-enhanced photocatalytic CO2 conversion within metal–organic frameworks under visible light. Journal of the American Chemical Society, 2017, 139(1): 356–362

    Article  Google Scholar 

  138. Wang X, Zhao X, Zhang D, Li G, Li H. Microwave irradiation induced UIO-66–NH2 anchored on graphene with high activity for photocatalytic reduction of CO2. Applied Catalysis B: Environmental, 2018, 228: 47–53

    Article  Google Scholar 

  139. Sadeghi N, Sharifnia S, Do T O. Enhanced CO2 photoreduction by a graphene-porphyrin metal–organic framework under visible light irradiation. Journal of Materials Chemistry. A, 2018, 6(37): 18031–18035

    Article  Google Scholar 

  140. Pipelzadeh E, Rudolph V, Hanson G, Noble C, Wang L. Photoreduction of CO2 on ZIF-8/TiO2 nanocomposites in a gaseous photoreactor under pressure swing. Applied Catalysis B: Environmental, 2017, 218: 672–678

    Article  Google Scholar 

  141. Chaudhary Y S, Woolerton T W, Allen C S, Warner J H, Pierce E, Ragsdale S W, Armstrong F A. Visible light-driven CO2 reduction by enzyme coupled CdS nanocrystals. Chemical Communications, 2012, 48(1): 58–60

    Article  Google Scholar 

  142. Liu B J, Torimoto T, Yoneyama H. Photocatalytic reduction of CO2 using surface-modified CdS photocatalysts in organic solvents. Journal of Photochemistry and Photobiology A: Chemistry, 1998, 113(1): 93–97

    Article  Google Scholar 

  143. Fujiwara H, Hosokawa H, Murakoshi K, Wada Y, Yanagida S, Okada T, Kobayashi H. Effect of surface structures on photocatalytic CO2 reduction using quantized CdS nanocrystallites. Journal of Physical Chemistry B, 1997, 101(41): 8270–8278

    Article  Google Scholar 

  144. Nguyen N T, Altomare M, Yoo J, Schmuki P. Efficient photocatalytic H2 evolution: controlled dewetting–dealloying to fabricate site-selective high-activity nanoporous Au particles on highly ordered TiO2 nanotube arrays. Advanced Materials, 2015, 27(20): 3208–3215

    Article  Google Scholar 

  145. Bouhadoun S, Guillard C, Dapozze F, Singh S, Amans D, Bouclé J, Herlin-Boime N. One step synthesis of N-doped and Au-loaded TiO2 nanoparticles by laser pyrolysis: application in photocatalysis. Applied Catalysis B: Environmental, 2015, 174–175: 367–375

    Article  Google Scholar 

  146. Wu H J, Henzie J, Lin W C, Rhodes C, Li Z, Sartorel E, Thorner J, Yang P, Groves J T. Membrane-protein binding measured with solution-phase plasmonic nanocube sensors. Nature Methods, 2012, 9(12): 91189

    Article  Google Scholar 

  147. Tao A, Sinsermsuksakul P, Yang P. Polyhedral silver nanocrystals with distinct scattering signatures. Angewandte Chemie International Edition, 2006, 45(28): 4597–4601

    Article  Google Scholar 

  148. Han B, Ou X, Deng Z, Song Y, Tian C, Deng H, Xu Y J, Lin Z. Nickel metal–organic framework monolayers for photoreduction of diluted CO2: metal-node-dependent activity and selectivity. Angewandte Chemie International Edition, 2018, 57(51): 16811–16815

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a startup fund from the University of Alaska Fairbanks.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Zhang or Junqing Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Zhang, J. Metal-organic frameworks for CO2 photoreduction. Front. Energy 13, 221–250 (2019). https://doi.org/10.1007/s11708-019-0629-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11708-019-0629-8

Keywords

Navigation