Skip to main content
Log in

Civil and structural engineering applications, recent trends, research and developments on pultruded fiber reinforced polymer closed sections: a review

  • Review
  • Published:
Frontiers of Structural and Civil Engineering Aims and scope Submit manuscript

Abstract

The objectives of this study are to review and evaluate the developments and applications of pultruded fiber-reinforced polymer composites in civil and structural engineering and review advances in research and developments. Several case applications are reviewed. The paper presents a state-of-the-art review of fundamental research on the behavior of pultruded fiber reinforced polymer closed sections and highlights gaps in knowledge and areas of potential further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. An Introduction to FRP composites for construction. Intelligent Sensing for Innovative Structures (ISIS) Educational Module 2, 2006 available online Password protected [March 2013]

    Google Scholar 

  2. Hollaway L C. Applications of fibre-reinforced polymer composite materials. In ICE manual of construction materials: Polymers and Polymer Fibre Composites. London: Thomas Telford Limited, 2010, 109–127

    Google Scholar 

  3. Bank L C. Composites for Construction—Structural Design with FRP Materials. New Jersey: John Wiley & Sons, 2006

    Google Scholar 

  4. Halliwell S M. Polymer composites in construction, BRE/DETR UK, BR405, Building Research Establishment, UK, 2000

    Google Scholar 

  5. BS EN ISO 13706-3:2002. Reinforced plastics composites. Specifications for pultruded profiles. Part 3: Specific requirements, British Standards Institution

  6. http://www.strongwell.com [March 2013]

  7. Collins A R, ed. Structural Engineering: Two Centuries of British Achievement. The Structural Engineer, ColCins: Tarot Print, 1983

  8. Ryall M J. Britannia Bridge: from concept to construction. Civil Engineering (New York), 1999, 132(2/3): 132–143

    Google Scholar 

  9. Chan T M, Gardner L, Law K H. Structural design of elliptical hollow sections: A review. In: Proceedings of the Institution of Civil Engineers. Structures and Buildings 163, London (England). 2010, SB6: 391–402

    Article  Google Scholar 

  10. http://www.fiberline.com/ [March 2013]

  11. Chlosta M. Feasibility study on fibre reinforced polymer cylindrical truss bridges for heavy traffic. Master Thesis. Delft: Delft University of Technology, 2012

    Google Scholar 

  12. Zhao L, Burguono R, Rovere H L, Seible F, Karbhari V. Preliminary evaluation of the hybrid tube bridge system. Technical Report No TR-2000/4-59AO032, California Department of Transportation. 2000

    Google Scholar 

  13. University of Maine Advanced Engineered Wood Composite Centre. http://www2.umaine.edu/aewc/content/view/185/71/ [March 2013]

  14. Wagners Composite Fibre Technologies Manufacturing Pty Ltd. Australia. http://www.wagners.com.au [March 2013]

  15. Guades E J, Aravinthan T, Islam M M. Driveability of composite piles. Available online at http://eprints.usq.edu.au/19025/2/Guades_Aravinthan_Islam_eddBE2011_AV.pdf [March 2013]

  16. Canning L, Hodgson J, Karuna R, Luke S, Brown P. Progress of advanced composites for civil infrastructure. In: Proceedings of the Institution of Civil Engineers, Structures and Buildings 160. London, 2007, SB6: 307–315

    Article  Google Scholar 

  17. Fardis M N, Khalili H. Concrete encased in fibre-glass reinforced plastic. ACI Journal Proceedings, 1981, 78(6): 440–446

    Google Scholar 

  18. Hollaway L C. The evolution of and the way forward for advanced polymer composites in the civil infrastructure. Construction & Building Materials, 2003, 17(6–7): 365–378

    Article  Google Scholar 

  19. Bai Y, Keller T. Shear failure of pultruded fibre reinforced polymer composites under axial compression. Composites for Construction, 2009, 13(3): 234–242

    Article  Google Scholar 

  20. Mirmiran A. A new concrete-filled hollow FRP composite column. Journal of Composites, 1996, 27B: 263–268

    Google Scholar 

  21. Mottram J T. Determination of critical load for flange buckling in concentrically loaded pultruded columns. Composites. Part B, Engineering, 2004, 35(1): 35–47

    Article  Google Scholar 

  22. Roberts T M. Influence of shear deformation on buckling of pultruded fibre reinforced plastic profiles. Composites for Construction, 2002, 6(4): 241–248

    Article  Google Scholar 

  23. Smith S J, Parsons I D, Hjelmstad K D. An experimental study of the behaviour of connections for pultruded GFRP I-beams and rectangular tubes. Composite Structures, 1998, 42(3): 281–290

    Article  Google Scholar 

  24. Teng J G, Yao J. Self-weight buckling of FRP tubes filled with wet concrete. Thin-walled Structures, 2000, 38(4): 337–353

    Article  Google Scholar 

  25. Teng J G, Yu T, Wong Y L, Dong S L. Hybrid FRP-concrete-steel tubular columns: Concept and behavior. Construction & Building Materials, 2007, 21(4): 846–854

    Article  Google Scholar 

  26. Karimi K, Tait M J, El-Dakhakhni WW. Testing and modelling of a novel FRP-encased steel-concrete composite column. Composite Structures, 2011, 93(5): 1463–1473

    Article  Google Scholar 

  27. Karimi K, Tait M J, El-Dakhakhni W W. Analytical modelling and axial load design of a novel FRP-encased steel-concrete composite column for various slenderness ratios. Engineering Structures, 2012, 46: 526–534

    Article  Google Scholar 

  28. Yu T, Teng J G. Design of concrete-filled FRP tubular columns: Provisions in the Chinese Technical Code for Infrastructure Applications of FRP Composites. Composites for Construction, 2011, 15(3): 451–461

    Article  Google Scholar 

  29. Ozbakkaloglu T, Oehlers D J. Concrete-filled square and rectangular FRP tubes under axial Compression. Composites for Construction, 2008, 12(4): 469–477

    Article  Google Scholar 

  30. ElGawady M A, Dawood H M. Analysis of segmental piers consisting of concrete filled FRP tubes. Engineering Structures, 2012, 38: 142–152

    Article  Google Scholar 

  31. Guades E, Aravinthan T, Islam M, Manalo A. A review on the driving performance of FRP composite piles. Composite Structures, 2012, 94(6): 1932–1942

    Article  Google Scholar 

  32. Mottram J T. Evaluation of design analysis for pultruded fibrereinforced polymeric box beams. Structural Engineer, 1991, 69(11): 211–220

    Google Scholar 

  33. Ibrahim S, Polyzois D, Hassan S. Development of glass fibre reinforced plastic poles for transmission and distribution lines. Canadian Journal of Civil Engineering, 2000, 27(5): 850–858

    Article  Google Scholar 

  34. Mitchell J R. Experimental and numerical investigations into optimal partial concrete filling of FRP and steel tubular poles. MSc Thesis, Queen’s University, Kingston, Canada, 2008

    Google Scholar 

  35. http://www.creativepultrusions.com [12 October 2012]

  36. The Pultrex® Pultrusion Design Manual of Standard and Custom Fiber Reinforced Polymer Structural Profiles Imperial Version, 2004, Vol 4 -Rev 8. Available online at http://www.creativepultrusions.com/LitLibrary/DMCD-ROM/DMV4R8.pdf [12 October 2012]

  37. Eurocomp. Structural design of polymer composites, Eurocomp Design Code and Handbook. Clarke J, ed. E&FN Spon London, 1996

  38. Wu Z, Mirmiran A, Zhu Z, Swanson J. Flexural behaviour of prestressed FRP tubular bridge deck. Composites. Part B, Engineering, 2009, 40(2): 125–133

    Article  Google Scholar 

  39. Albanesi T, Nuti C, Vanzi I. Closed form constitutive relationship for concrete filled FRP tubes under compression. Construction & Building Materials, 2007, 21(2): 409–427

    Article  Google Scholar 

  40. Barbero E. Structural design equations for FRP columns. Materials & Design, 1995, 6(1–2): 197–210

    Google Scholar 

  41. Bisby L, Ranger M. Axial-flexural interaction in circular FRP-confined reinforced concrete columns. Construction & Building Materials, 2010, 24(9): 1672–1681

    Article  Google Scholar 

  42. Choi K K, Xiao Y. Analytical Model of Circular CFRP Confined Concrete-Filled Steel Tubular Columns under Axial Compression. Composites for Construction, 2010, 14(1): 125–133

    Article  Google Scholar 

  43. Ghorbi E, Soltani M, Maekawa K. Development of a compressive constitutive model for FRP-confined concrete elements. Composites: Part B, 2012〈http://dx.doi.org/10.1016/j.compositesb.2012.07.014〉[14 October 2012]

    Google Scholar 

  44. Hu Y M, Yu T, Teng J G. FRP-confined circular concrete-filled thin steel tubes under axial compression. Composites for Construction, 2011, 15(5): 850–860

    Article  Google Scholar 

  45. Kollár L P. Local buckling of fibre reinforced plastic composite structural members with open and closed cross sections. Structural Engineering, 2003, 129(11): 1503–1513

    Article  Google Scholar 

  46. Lam L, Teng J G. Stress-strain model for FRP-confined concrete under cyclic axial compression. Engineering Structures, 2009, 31(2): 308–321

    Article  Google Scholar 

  47. Mohamed H M, Masmoudi R. Deflection predictions of steel and FRP-reinforced concrete-filled FRP tube beams. Composites for Construction, 2011, 15(3): 462–472

    Article  Google Scholar 

  48. Mohamed H M, Masmoudi R. Axial load capacity of concrete-filled FRP tube columns: Experimental versus theoretical predictions. Composites for Construction, 2010, 14(2): 231–243

    Article  Google Scholar 

  49. Ozbakkaloglu T, Lim J C, Vincent T. FRP-confined concrete in circular sections: Review and assessment of stress-strain models’. Engineering Structures, 2012 〈 http://dx.doi.org/10.1016/j.engstruct.2012.06.010〉[14 October 2012]

    Google Scholar 

  50. Johnson A F. Simplified buckling analysis for RP beams and columns. In: Proceedings of the 1st European Conference on Composite Materials. Bordeaux, 1985, 541

  51. Springolo M. New fibre-reinforced polymer box beam: Investigation of static behaviour [online]. Dissertation for the Doctoral Degree, Toowoomba: University of Southern Queensland, 2005〈http://eprints.usq.edu.au/1513/〉[12 October 2012]

    Google Scholar 

  52. Hayes M D, Ohanehi D, Lesko J J, Cousins T E, Witcher D. Performance of Tube and Plate Fiberglass Composite Bridge Deck. Journal of Composites for Construction, 2000, 4(2): 48–55

    Article  Google Scholar 

  53. Wu Z. Prestressed FRP tubular deck system [online]. Master thesis, Raleigh: North Carolina State University, 2003

    Google Scholar 

  54. Mamalis A G, Manolakos D E, Ioannidis M B, Papapostolou D P. The static and dynamic axial collapse of CFRP square tubes: Finite element modelling. Composite Structures, 2006, 74(2): 213–225

    Article  Google Scholar 

  55. Mirmiran A, Shao Y, Shahawy M. Analysis and field tests on the performance of composite tubes under pile driving impact. Composite Structures, 2002, 55(2): 127–135

    Article  Google Scholar 

  56. Engindeniz M, Zureick A H. Deflection response of glass fibrereinforced pultruded components in hot weather Climates. Composites for Construction, 2008, 12(3): 355–363

    Article  Google Scholar 

  57. Guades E, Aravinthan T. Residual properties of square FRP composite tubes subjected to repeated axial impact. Composite Structures, 2013, 95: 354–365

    Article  Google Scholar 

  58. Choi Y, Yuan R L. Time-dependent deformation of pultruded fibre reinforced polymer composite column. Composites for Construction, 2003, 7: 357–362

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfred Kofi Gand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gand, A.K., Chan, TM. & Mottram, J.T. Civil and structural engineering applications, recent trends, research and developments on pultruded fiber reinforced polymer closed sections: a review. Front. Struct. Civ. Eng. 7, 227–244 (2013). https://doi.org/10.1007/s11709-013-0216-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11709-013-0216-8

Keywords

Navigation