Skip to main content
Log in

Computational model generation and RVE design of self-healing concrete

  • Research Article
  • Published:
Frontiers of Structural and Civil Engineering Aims and scope Submit manuscript

Abstract

Computational homogenization is a versatile tool that can extract effective properties of heterogeneous or composite material through averaging technique. Self-healing concrete (SHC) is a heterogeneous material which has different constituents as cement matrix, sand and healing agent carrying capsules. Computational homogenization tool is applied in this paper to evaluate the effective properties of self-healing concrete. With this technique, macro and micro scales are bridged together which forms the basis for multi-scale modeling. Representative volume element (RVE) is a small (microscopic) cell which contains all the microphases of the microstructure. This paper presents a technique for RVE design of SHC and shows the influence of volume fractions of different constituents, RVE size and mesh uniformity on the homogenization results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Van Tittelboom K, De Belie N. Self-healing in cementitious materials—a review. Materials, 2013, 6(6): 2182–2217

    Article  Google Scholar 

  2. Dry C. Matrix cracking repair and filling using active and passive modes for smart timed release of chemicals from fibers into cement matrices. Smart Materials and Structures, 1994, 3(2): 118

    Article  MathSciNet  Google Scholar 

  3. White S R, Sottos N R, Geubelle P H, Moore J S, Kessler M, Sriram S R, Brown E N, Viswanathan S. Autonomic healing of polymer composites. Nature, 2001, 409(6822): 794–797

    Article  Google Scholar 

  4. Dry C. Procedures developed for self-repair of polymer matrix composite materials. Composite Structures, 1996, 35(3): 263–269

    Article  Google Scholar 

  5. Li V C, Lim Y M, Chan Y W. Feasibility study of a passive smart self-healing cementitious composite. Composites. Part B, Engineering, 1998, 29(6): 819–827

    Article  Google Scholar 

  6. Lee J Y, Buxton G A, Balazs A C. Using nanoparticles to create selfhealing composites. The Journal of chemical physics, 2004, 121(11): 5531–5540

    Article  Google Scholar 

  7. Li V C, Yang E H. Self Healing in Concrete Materials. Self Healing Materials. Netherlands: Springer, 2007, 161–193

    Chapter  Google Scholar 

  8. Gumbsch P, Pippan R, eds. Multiscale Modelling of Plasticity and Fracture by Means of Dislocation Mechanics. Springer Science & Business Media, 2011, 522

  9. Suquet P M. Local and global aspects in the mathematical theory of plasticity. Plasticity today: Modelling, methods and applications, 1985, 279–310

    Google Scholar 

  10. Guedes J M, Kikuchi N. Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods. Computer Methods in Applied Mechanics and Engineering, 1990, 83(2): 143–198

    Article  MATH  MathSciNet  Google Scholar 

  11. Terada K, Kikuchi N. Nonlinear homogenization method for practical applications. ASME Applied Mechanics Division-Publications-AMD, 1995, 212: 1–16

    Google Scholar 

  12. Ghosh S, Lee K, Moorthy S. Multiple scale analysis of heterogeneous elastic structures using homogenization theory and Voronoi cell finite element method. International Journal of Solids and Structures, 1995, 32(1): 27–62

    Article  MATH  MathSciNet  Google Scholar 

  13. Ghosh S, Lee K, Moorthy S. Two scale analysis of heterogeneous elastic-plastic materials with asymptotic homogenization and Voronoi cell finite element model. Computer Methods in Applied Mechanics and Engineering, 1996, 132(1): 63–116

    Article  MATH  Google Scholar 

  14. Kouznetsova V, Geers M G D, Brekelmans W A M. Multi-scale constitutive modelling of heterogeneous materials with a gradientenhanced computational homogenization scheme. International Journal for Numerical Methods in Engineering, 2002, 54(8): 1235–1260

    Article  MATH  Google Scholar 

  15. Yuan Z, Fish J. Toward realization of computational homogenization in practice. International Journal for Numerical Methods in Engineering, 2008, 73(3): 361–380

    Article  MATH  MathSciNet  Google Scholar 

  16. Weinan E. Principles of Multiscale Modeling. Cambridge University Press, 2011

    MATH  Google Scholar 

  17. THAO T D P. Quasi-Brittle Self-Healing Materials: Numerical Modelling and Applications in Civil Engineering. Dissertation for the Doctoral Degree. Singapore: National University of Singapore, 2011

    Google Scholar 

  18. Bakis C, ed. American Society of Composites-28th Technical Conference. DEStech Publications, Inc, 2013

  19. Talebi H, Silani M, Bordas S P A, Kerfriden P, Rabczuk T. A computational library for multiscale modeling of material failure. Computational Mechanics, 2014, 53(5): 1047–1071

    Article  MATH  MathSciNet  Google Scholar 

  20. Li G. Self-healing Composites: Shape Memory Polymer Based Structures. Chichester, West Sussex, UK: John Wiley & Sons, 2014

    Book  Google Scholar 

  21. Pierard O, Friebel C, Doghri I. Mean-field homogenization of multiphase thermo-elastic composites: a general framework and its validation. Composites Science and Technology, 2004, 64(10): 1587–1603

    Article  Google Scholar 

  22. Odegard G M, Clancy T C, Gates T S. Modeling of the mechanical properties of nanoparticle/polymer composites. Polymer, 2005, 46(2): 553–562

    Article  Google Scholar 

  23. Drugan, W J, Willis J R. A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites. Journal of the Mechanics and Physics of Solids, 1996, 44(4): 497–524

    Article  MATH  MathSciNet  Google Scholar 

  24. De Bellis M L, Ciampi V, Oller S, Addessi D. First order computational homogenization. Multi-scale techniques for masonry structures (pp. 27–74). Barcelona: International Center for Numerical Methods in Engineering, 2010

    Google Scholar 

  25. Hill R. Elastic properties of reinforced solids: some theoretical principles. Journal of the Mechanics and Physics of Solids, 1963, 11(5): 357–372

    Article  MATH  Google Scholar 

  26. Van der Sluis O, Schreurs P J G, Brekelmans W A M, Meijer H E H. Overall behaviour of heterogeneous elastoviscoplastic materials: Effect of microstructural modelling. Mechanics of Materials, 2000, 32(8): 449–462

    Article  Google Scholar 

  27. Terada K, Hori M, Kyoya T, Kikuchi N. Simulation of the multiscale convergence in computational homogenization approaches. International Journal of Solids and Structures, 2000, 37(16): 2285–2311

    Article  MATH  Google Scholar 

  28. Huet C. Application of variational concepts to size effects in elastic heterogeneous bodies. Journal of the Mechanics and Physics of Solids, 1990, 38(6): 813–841

    Article  MathSciNet  Google Scholar 

  29. Huet C. Coupled size and boundary-condition effects in viscoelastic heterogeneous and composite bodies. Mechanics of Materials, 1999, 31(12): 787–829

    Article  Google Scholar 

  30. Ostoja-Starzewski M. Random field models of heterogeneous materials. International Journal of Solids and Structures, 1998, 35(19): 2429–2455

    Article  MATH  Google Scholar 

  31. Ostoja-Starzewski M. Scale effects in materials with random distributions of needles and cracks. Mechanics of Materials, 1999, 31(12): 883–893

    Article  Google Scholar 

  32. Pecullan S, Gibiansky L V, Torquato S. Scale effects on the elastic behavior of periodic and hierarchical two-dimensional composites. Journal of the Mechanics and Physics of Solids, 1999, 47(7): 1509–1542

    Article  MATH  MathSciNet  Google Scholar 

  33. Gumbsch P, Pippan R, eds. Multiscale Modelling of Plasticity and Fracture by Means of Dislocation Mechanics. Springer Science & Business Media, 2011, 522

    Google Scholar 

  34. Övez B, Citak B, Oztemel D, Balbas A, Peker S, Cakir S. Variation of droplet sizes during the formation of microcapsules from emulsions. Journal of Microencapsulation, 1997, 14(4): 489–499

    Article  Google Scholar 

  35. Van Tittelboom K, Adesanya K, Dubruel P, Van Puyvelde P, De Belie N. Methyl methacrylate as a healing agent for self-healing cementitious materials. Smart Materials and Structures, 2011, 20 (12): 125016

    Article  Google Scholar 

  36. Wang X, Xing F, Zhang M, Han N, Qian Z. Experimental study on cementitious composites embedded with organic microcapsules. Materials (Basel), 2013, 6(9): 4064–4081

    Article  Google Scholar 

  37. Keller M W, Sottos N R. Mechanical properties of microcapsules used in a self-healing polymer. Experimental Mechanics, 2006, 46(6): 725–733

    Article  Google Scholar 

  38. Mindess S, Young J F, Darwin D. Response of concrete to stress. In: Concrete, 2nd ed. Upper Saddle River, NJ: Prentice Hall, 2003, 303–362

    Google Scholar 

  39. Powers T C, Brownyard T L. Studies of the physical properties of hardened Portland cement paste. ACI Journal Proceedings, ACI, 1947, 43(9): 845–880

    Google Scholar 

  40. Gilford III J. Microencapsulation of Self-healing Concrete Properties. Master’s thesis, Louisiana State Univ Baton Rouge, 2012

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoying Zhuang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quayum, M.S., Zhuang, X. & Rabczuk, T. Computational model generation and RVE design of self-healing concrete. Front. Struct. Civ. Eng. 9, 383–396 (2015). https://doi.org/10.1007/s11709-015-0320-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11709-015-0320-z

Keywords

Navigation