Skip to main content
Log in

The role of GA, IAA and BAP in the regulation of in vitro shoot growth and microtuberization in potato

  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The effect of auxin, GA and BAP on potato shoot growth and tuberization was investigated under in vitro condition. The shoot length of potato explants increased with the increasing of concentrations (0.5 – 10 mg dm−3) of IAA treatment especially with the addition of GA3 (0.5 mg dm−3), but was inhibited by BAP (5 mg dm−3). The root number and root fresh weight of potato explants increased with the increasing of IAA levels either in the presence of GA3 (treatment IAA+GA) or not (IAA alone). However, no root was observed in the treatment IAA+BAP, instead there were brown swollen calli formed around the basal cut surface of the explants. The addition of GA3 remarkably increased the fresh weight and diameter of calli. Microtubers were formed in the treatments of IAA+BAP and IAA + GA + BAP but not observed in the treatments of IAA alone or IAA + GA. IAA of higher concentrations (2.5 – 10 mg dm−3) was helpful to form sessile tubers. With the increasing of IAA levels, the fresh weight and diameter of microtubers increased progressively. At 10 mg/L IAA, the fresh weight and diameter of microtubers in the treatment of IAA + GA + BAP were 409.6 % and 184.4 % of that in the treatment of IAA + BAP respectively, indicating the interaction effect of GA and IAA in potato microtuberization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Estrada R., Tovar P., Dodds J. H. 1986. Induction of in vitro tubers in a broad range of potato genotypes. Plant Cell Tiss. Org. Cult., 7: 3–10.

    Article  Google Scholar 

  • FAO. 1995. Potatoes in the 1990s. Situations and Prospects of World Potato Economy. Publ. No. M-71, FAO, Rome: 39.

    Google Scholar 

  • Haga K., Iino M. 1998. Auxin-growth relationships in maize coleoptiles and pea internodes and control by auxin of the tissue sensitivity to auxin. Plant Physiol., 117: 1473–1486.

    Article  CAS  PubMed  Google Scholar 

  • Harvey B. M. R., Crothers S. H., Evans N. E., Selby C. 1991. The use of growth retardants to improve microtuber formation by potato (Solanum tuberosum). Plant Cell Tiss. Org. Cult., 27: 59–64.

    Article  CAS  Google Scholar 

  • Hooley R. 1994. Gibberellins: perception, transduction and responses. Plant Mol. Biol., 26: 1529–1555.

    Article  PubMed  CAS  Google Scholar 

  • Hussey G., Stacey N. J. 1984. Factors affecting the formation of in vitro of potato (Solanum tuberosum L.). Ann. Bot., 53: 565–578.

    CAS  Google Scholar 

  • Kende H., Zeevaart J. A. D. 1997. The five ‘classical’ plant hormones. Plant Cell 9: 1197–1210.

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Delgado H., Scott I. M. 1997. Induction of in vitro tuberization of potato plants by acetylsalicylic acid. J. Plant Physiol., 151: 74–78.

    CAS  Google Scholar 

  • Mauk C. S., Langille A. R. 1978. Physiology of tuberization in Solanum tuberosum L. Plant Physiol., 62: 438–442.

    Article  PubMed  CAS  Google Scholar 

  • Menzel C. M. 1980. Tuberization in potato at high temperatures: response to gibberellin and growth inhibitors. Ann. Bot., 46: 259–265.

    CAS  Google Scholar 

  • Murashige T., Skoog F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant., 15: 473–479.

    Article  CAS  Google Scholar 

  • Obata-Sasamoto H., Suzuki H. 1979. Activities of enzymes relating to starch synthesis and endogenous levels of growth regulators in potato stolon tips during tuberization. Physiol. Plant., 45: 320–324.

    Article  CAS  Google Scholar 

  • Palmer C.E., Smith O. E. 1969. Cytokinins and tuber initiation in the potato Salanum tuberosum L. Nature, 221: 279–280.

    Article  CAS  Google Scholar 

  • Radmacher W. 2000. Growth retardants: effects on gibberellin biosynthesis and other metabolic pathways. Ann. Rev. Plant Physiol. Plant Mol. Biol., 51: 501–531.

    Article  Google Scholar 

  • Ross J. J., O’Neill D. P. 2001. New interactions between classical plant hormones. Trends Plant Sci., 6: 2–4.

    Article  PubMed  CAS  Google Scholar 

  • Ross J. J., O’Neill D. P., Smith J. J., Kerckhoffs L. H. J., Elliott R. C. 2000. Evidence that auxin promotes gibberellin A1 biosynthesis in pea. Plant J., 21: 547–552.

    Article  PubMed  CAS  Google Scholar 

  • Ross J. J., O’Neill D. P., Wolbang C. M., Symons G. M., Reid J. 2002. Auxin — Gibberillin interactions and their role in plant growth. J. Plant Growth Regul., 20: 346–353.

    Google Scholar 

  • Sharma N., Kaur N., Gupta A. K. 1998. Effects of gibberellic acid and chlorocholine chloride on tuberisation and growth of potato (Solanum tuberosum L.). J. Sci. Food Agric., 78: 466–470.

    Article  CAS  Google Scholar 

  • SPSS. 1999. SPSS for Windows, version 10.0, SPSS Inc, Chicago, 233S, Wacker Drive, Chicago, Illinois, USA.

    Google Scholar 

  • Struik P. C., Vreugdenhil D., Vaneck H. J., Bachem C. W., Visser R. G. F. 1999. Physiological and genetic control of tuber formation. Potato Res., 42: 313–331.

    Article  CAS  Google Scholar 

  • Tang G. X., Zhou W. J., Li H. Z., Mao B. Z., He Z. H., Yoneyama K. 2003. Medium, explant and genotype factors influencing shoot regeneration in oilseed Brassica spp. J. Agron. Crop Sci., 189: 351–358.

    Article  Google Scholar 

  • Vreugdenhil D., Struik P. C. 1989. An intergrated view of the hormonal regulation of tuber formation in potato (Solanum tuberosum L.). Physiol. Plant., 75: 525–531.

    Article  CAS  Google Scholar 

  • Yang, T., Davies, P. J., Reid J. B. 1996. Genetic dissection of the relative roles of auxin and gibberellin in the regulation of stem elongation in intact light grown peas. Plant Physiol., 110: 1029–1034.

    PubMed  CAS  Google Scholar 

  • Zhang G. Q., Zhou W. J., Gu H. H., Song W. J., Momoh E. J. J. 2003. Plant regeneration from the hybridization of Brassica napus and B. juncea through embryo culture. J. Agron. Crop Sci., 189: 347–350.

    Article  Google Scholar 

  • Zhang Z. J., Li H. Z., Li Z. M., Zhou W. J. 2003. Effect of jasmonic acid on explant growth and tuberization in potato. In: Research and Industrial Exploitation of Potato in China, ed. by Chen Y. L., D. Y. Qu. Harbin Engineering University Press, Harbin: 158–163.

    Google Scholar 

  • Zhou W. J., Yoneyama K., Takeuchi Y., Iso S., Rungmekarat S., Chae S. H., Sato D., Joel D. M. 2004. In vitro infection of host roots by differentiated calli of the parasitic plant Orobanche. J. Exp. Bot., 55: 899–907.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huizhen Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Zhou, W. & Li, H. The role of GA, IAA and BAP in the regulation of in vitro shoot growth and microtuberization in potato. Acta Physiol Plant 27, 363–369 (2005). https://doi.org/10.1007/s11738-005-0013-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-005-0013-7

Key words

Navigation