Skip to main content
Log in

Effect of salinity on physiological characteristics, yield and quality of microtubers in vitro in potato

  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

In vitro microtuberization provides an adequate experimental model for the physiological and metabolic studies of tuberization and the preliminary screenings of potential potato genotypes. The effects of saline stress at 0–80 mmol concentration on in vitro tuberization of two potato cultivars were investigated in this study. With an increase in the salt concentration, the microtuberization of potato was either delayed by 5–10 days (20 and 40 mmol NaCl) or inhibited completely (80 mmol NaCl) in addition to the reduction in microtuber yields. The two potato genotypes studied showed different trends in total soluble sugars, sucrose and starch contents of microtubers under NaCl stress, while glucose and fructose levels remained unchanged. The vitamin C content in microtubers of two potato genotypes was reduced by salt stress. Salinity applied from 20 to 60 mmol progressively increased proline and malondialdehyde (MDA) levels in microtubers of both the potato cultivars. In genotype Zihuabai, NaCl at a low concentration (20 mmol) led to a significant increase in peroxidase (POD) and polyphenoloxiadase (PPO) activities, while in Jingshi-2, the PPO activity decreased progressively with an increase in NaCl concentrations. Genotype Zihuabai exhibited higher tolerance to salt stress than Jingshi-2 under in vitro conditions. These results could be used for preliminary selections of salt tolerance in potato breeding programmes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anonymous 1999. (Shanghai Plant Physiology Institute of Chinese Academy of Sciences & Shanghai Plant Physiology Society). Experimental Guide of Modern Plant Physiology. Science Press, Beijing: 127–128.

    Google Scholar 

  • Augustin J., Johnson S. R., Teitzel C., Toma R. B., Shaw R. L., True R. H., Hogan J. M., Deutsch R. M. 1978. Vitamin composition of freshly harvested and stored potatoes. J. Food Sci., 43: 1566–1570.

    Article  CAS  Google Scholar 

  • Evers D., Schmit C., Mailliet Y., Hausman J. F. 1997. Growth characteristics and biochemical changes of poplar shoots in vitro under sodium chloride stress. J. Plant Physiol., 151: 748–753.

    CAS  Google Scholar 

  • Fernie A. R., Willmitzer L., Trethewey R. N. 2002. Sucrose to starch: a transition in molecular plant physiology. Trends Plant Sci., 7: 35–41.

    Article  PubMed  CAS  Google Scholar 

  • Heuer B., Nadler A. 1998. Physiological response of potato plants to soil salinity and water deficit. Plant Sci., 137: 43–51.

    Article  CAS  Google Scholar 

  • Katerji N., van Hoorn J. W., Hamdy A., Mastrorilli M. 2003. Salinity effect on crop development and yield, analysis of salt tolerance according to several classification methods. Agric. Water Manag., 62: 37–66.

    Article  Google Scholar 

  • Leul M., Zhou W.J. 1999. Alleviation of waterlogging damage in winter rape by uniconazole application: Effects on enzyme activity, lipid peroxidation and membrane integrity. J. Plant Growth Regul., 18: 9–14.

    Article  CAS  PubMed  Google Scholar 

  • Levy D. 1992. The response of potatoes (Solanum tuberosum L.) to salinity: plant growth and tuber yields in the arid desert of Israel. Ann. Appl. Biol., 120: 547–555.

    Article  Google Scholar 

  • Li H. Z., Zhou W. J., Zhang Z. J., Gu H. H., Takeuchi Y., Yoneyama K. 2005. Effect of γ-irradiation on development, yield and quality of microtubers in vitro in potato (Solanum tuberosum L.). Biol. Plant., in press.

  • Lin C. C., Kao C. H. 1996. Proline accumulation is associated with inhibition of rice seedling root growth caused by NaCl. Plant Sci., 114: 121–128.

    Article  CAS  Google Scholar 

  • Lopez-Delgado H., Scott I. M. 1997. Induction of in vitro tuberization of potato plants by acetylsalicylic acid. J. Plant Physiol., 151: 74–78.

    CAS  Google Scholar 

  • Martinez C. A., Maestri M., Lani E. R. G. 1996. In vitro salt tolerance and proline accumulation in Andean potato (Solanum spp.) differing in frost resistance. Plant Sci., 116: 177–184.

    Article  CAS  Google Scholar 

  • Men F. Y., Liu M. Y. 1995. Physiology of Potato. China Agriculture Press, Beijing: 317–335.

    Google Scholar 

  • Momoh E.J.J., Zhou W.J., Kristiannson B. 2002. Variation in the development of secondary dormancy in oilseed rape genotypes under conditions of stress. Weed. Res., 42: 446–455.

    Article  Google Scholar 

  • Murashige T., Skoog F. 1962. A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol. Plant., 15: 473–497.

    Article  CAS  Google Scholar 

  • Nadler A., Heuer B. 1995. Effect of saline irrigation and water deficit on tuber quality, Potato Res., 38: 119–123.

    Article  Google Scholar 

  • Nemoto Y., Sasakuma T. 2002. Differential stress responses of early salt-stress responding genes in common wheat. Phytochem., 61: 129–133.

    Article  CAS  Google Scholar 

  • Nie H. Y., Huang W. K., Tang Y. Z., Fu J. Z. 1987. Vitamin and Its Analytical Methods. Shanghai Scientific and Technologic Literature Press, Shanghai: 234–236.

    Google Scholar 

  • Nowak J, Colborne D. 1989. In vitro tuberization and tuber proteins as indicators of heat stress tolerance in potato. Am. Pot. J., 66: 35–45.

    Google Scholar 

  • Patel R. M., Prasher S. O., Donnelly D., Bonnell R. B. 2001. Effect of initial soil salinity and subirrigation water salinity on potato tuber yield and size. Agric. Water Manag., 46: 231–239.

    Article  Google Scholar 

  • Sasikala D. P. P., Devi Prasad P. V. 1994. Salinity effects on in vitro performance of some cultivars of potato. Braz. J. Plant Physiol., 6: 1–6.

    CAS  Google Scholar 

  • Sergeeva L. I., Bruijn S. M., Koot-Gronsveld E. A. M., Navratil O., Vreugdenhil D. 2000. Tuber morphology and starch accumulation are independent phenomena: Evidence from ipt-transgenic potato lines. Physiol. Plant., 108: 435–443.

    Article  CAS  Google Scholar 

  • Silva J. V. B., Otoni W. C., Martinez C. A., Dias L. M., Silva M. A. P. 2001. Microtuberization of Andean potato species (Solanum spp.) as affected by salinity. Sci. Horti., 89: 91–101.

    Article  Google Scholar 

  • Smirnoff N. 2000. Ascorbic acid: metabolism and functions of a multi-facetted molecule. Curr. Opin. Plant Biol., 3: 229–235.

    PubMed  CAS  Google Scholar 

  • Struik P., Vreugdenhil D., Vaneck H. J., Bachem C. W., Visser R. G. F. 1999. Physiological and genetic control of tuber formation. Potato Res., 42: 313–331.

    Article  CAS  Google Scholar 

  • Veramendi J., Willmitzer L., Trethewey R. N. 1999. In vitro grown potato microtubers are a suitable system for the study of primary carbohydrate metabolism. Plant Physiol. Biochem., 37: 693–697.

    Article  CAS  Google Scholar 

  • Vreugdenhil D., Boogaard Y., Visser R. G. F., Bruijn S. M. 1998. Comparison of tuber and shoot formation from in vitro cultured potato explants. Plant Cell Tis. Org. Cult., 53: 197–204.

    Article  CAS  Google Scholar 

  • Winicov D. 1993. Gene expression in relation to salt tolerance, In: Stress-induced Gene Expression in Plants, ed. by Basra A. S. Hardwood Academic Publishers, Switzerland: 61–130.

    Google Scholar 

  • Zhang X. Z. 1992. Methodology of Crop Physiology. Agriculture Press, Beijing: 142–212.

    Google Scholar 

  • Zhang Y., Brault M., Chalavi V., Donnelly D. 1993. In vitro screening for salinity tolerant potato. In: Proc. of the 13th International Congress on Biometeorology. Calgary, Canada.

  • Zhang Z. J., Zhou W. J., Li H. Z. 2004. The role of GA, IAA and BAP in the regulation of in vitro shoot growth and microtuberization in potato. Acta Physiol. Plant., in press.

  • Zhao K. F. 1993. Physiology of Salinity Resistance in Plant. China Science and Technology Press, Beijing: 52–55.

    Google Scholar 

  • Zhou W. J., Leul M. 1998. Uniconazole-induced alleviation of freezing injury in relation to change in hormonal balance, enzyme activities and lipid peroxidation in winter rape. Plant Growth Regul., 26: 41–47.

    Article  CAS  Google Scholar 

  • Zhou W. J., Leul M. 1999. Uniconazole-induced tolerance of rape plant to heat stress in relation to changes in hormonal levels, enzyme activities and lipid peroxidation. Plant Growth Regul., 27: 99–104.

    Article  CAS  Google Scholar 

  • Zhou W.J., Yoneyama K., Takeuchi Y., Iso S., Rungmekarat S., Chae S.H, Sato D., Joel D.M. 2004. In vitro infection of host roots by differential calli of the parasitic plant Orobanche. J. Exp. Bot., 55: 899–907.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weijun Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Mao, B., Li, H. et al. Effect of salinity on physiological characteristics, yield and quality of microtubers in vitro in potato. Acta Physiol Plant 27, 481–489 (2005). https://doi.org/10.1007/s11738-005-0053-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-005-0053-z

Key words

Navigation