Skip to main content
Log in

Spermine and putrescine enhance oxidative stress tolerance in maize leaves

  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The protective effects of spermine (SPM) and putrescine (PUT) against paraquat (PQ), a herbicide in agriculture and oxidative stress inducer, were investigated in the leaves of maize. Maize leaves were pretreated to SPM and PUT at concentrations of 0.2 and 1 mM and treated with PQ afterwards. Pretreatment with 1 mM of SPM and PUT significantly prevented the losses in chlorophyll and carotenoid levels induced by PQ. Ascorbic acid content in the leaves pretreated with both polyamines was found to be higher than those of the leaves pretreated with water. Also, pretreatment with SPM and PUT was determined to have some effects on the activities of superoxide dismutase (SOD) and peroxidase (POD). 1 mM of SPM increased SOD activity, but PUT has no significant effect on SOD activity. On the other hand, POD activity was recorded to increase slightly in response to both concentrations of SPM and 1 mM of PUT. The results showed that such polyamine pretreated plants may become more tolerant to oxidative stress due to increases in the antioxidative enzymes and antioxidants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EDTA:

Ethylenediamine tetra acetic acid

NBT:

Nitroblue tetrazolium

POD:

Peroxidase

PQ:

Paraquat

PUT:

Putrescine

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

SPM:

Spermine

References

  • Arnon D.I. 1949. Copper enzymes in chloroplasts, polyphenoloxidase in Beta vulgaris. Plant Physiol. 24: 1–15.

    PubMed  CAS  Google Scholar 

  • Asada K., Kiso K.. 1973. Initiation of aerobic oxidation of sulfite by illuminated spinach chloroplast. Eur. J. Biochem. 33: 253–257.

    Article  PubMed  CAS  Google Scholar 

  • Bais H.P., Ravishankar G.S. 2002. Role of polyamines in the ontogeny of plants and their biotechnological applications. Plant Cell, Tissue and Organ Culture 69: 1–34.

    Article  CAS  Google Scholar 

  • Beauchamp C., Fridovich I. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem. 44: 276–287.

    Article  PubMed  CAS  Google Scholar 

  • Besford R.T., Richardson C.M., Campos J.L., Tiburcio A.F. 1993. Effect of polyamines on stabilization of molecular complexes of thylakoid membranes of osmotically stressed oat leaves. Planta 189: 201–206.

    Article  CAS  Google Scholar 

  • Bors W., Langebartels C., Michel C., Sandermann J.H. 1989. Polyamines as radical scavengers and protectants against ozone damage. Phytochem. 28: 1589–1595.

    Article  CAS  Google Scholar 

  • Bratton D.L. 1994. Polyamine inhibition of transbilayer movement of plasma membrane phospholipids in the erythrocyte ghost. J. Biol. Chem. 269: 22517–22523.

    PubMed  CAS  Google Scholar 

  • Cakmak I., Marschner H. 1992. Magnesium deficiency enhances resistance to paraquat toxicity in bean leaves. Plant, Cell and Environment 15: 955–960.

    Article  CAS  Google Scholar 

  • Canal M.J., Tames R.S., Fernandez B. 1988. Peroxidase and polyphenol oxidase activities in Cyperus esculentus leaves following glyphosate applications. Physiol. Plant. 74: 125–130.

    Article  CAS  Google Scholar 

  • Carlioz A., Toutai D. 1986. Isolation of superoxide dismutase mutants in Escherichia coli: is superoxide dismutase necessary for aerobic life? The EMBO Journal 5: 623–630.

    PubMed  CAS  Google Scholar 

  • Demming-Adams B. 1990. Carotenoids and photoprotection in plants: A role for the xanthophyll zeaxanthin. Biochem. Biophys. Acta 1020: 1–24.

    Article  Google Scholar 

  • Dhindsa R.S., Matowe W. 1981. Drought tolerance in two mosses: Correlated with enzymatic defense against lipid peroxidation. J. Exp. Bot. 32: 79–91.

    Article  CAS  Google Scholar 

  • Dodge A. 1994. Herbicide action and effects on detoxification processes. In: Foyer C.H. and Mullineaux P.M. (eds), Causes of photooxidative stress and amelioration of defense systems in plants. CRC Press, Boca Raton, FL, pp. 219–236.

    Google Scholar 

  • Drolet G., Dumbroff E.B., Legge R.L., Thompson J.E. 1986. Radical scavenging properties of polyamines. Phytochem. 25: 367–371.

    Article  CAS  Google Scholar 

  • Furusawa I., Tanaka K., Thanutong P., Mizuguchi M., Yazaki M., Asada K. 1984. Paraquat resistant tobacco calluses with enhanced superoxide dismutase activity. Plant and Cell Physiol. 25: 1247–1254.

    CAS  Google Scholar 

  • Gupta A.S., Webb R.P., Holaday S.A., Allen R.D. 1993. Overexpression of superoxide dismutase protects plants from oxidative stress. Plant Physiol. 103: 1067–1073.

    PubMed  Google Scholar 

  • Halliwell B. 1982. The toxic effects of oxygen on plant tissues. In: Oberley L.W. (ed), Superoxide dismutase. CRC Press, Boca Raton, Florida, pp. 89–124.

    Google Scholar 

  • Jaspars E.M.J. 1965. Pigmentation of tobacco crowngall tissues cultured in vitro in dependence of the composition of the medium. Physiol. Plant. 18: 933–940.

    Article  CAS  Google Scholar 

  • Kenylon W.H., Duke S.D. 1985. Effects of acifluorfen on endogenous antioxidants and protective enzymes in cucumber. Plant Phsiol. 79: 216–220.

    Google Scholar 

  • Kirtikara K., Talbot D. 1996. Alteration in protein accumulation, gene expression and ascorbate- glutathione pathway in tomato (Lycopersicon esculentum) under paraquat and ozone stress. J. Plant Physiol. 148: 752–760.

    CAS  Google Scholar 

  • Knox J.P., Dodge A.D. 1985. Singlet oxygen and plants. Phytochem. 24: 889–896.

    Article  CAS  Google Scholar 

  • Langebartels C., Kerner K., Leonardi S., Schraudner M., Trost M., Heller W., Sandermann H. 1991. Biochemical plant responses to ozone. Differential induction of polyamine and ethylene biosynthesis in tobacco, Plant Physiol. 95: 882–889.

    Article  PubMed  CAS  Google Scholar 

  • Liebler D.C., Kling D.S., Reed D.J. 1986. Antioxidant protection of phospholipid bilayers by á- tocopherol. Control of a-tocopherol status by ascorbic acid and glutathione, J.Biol. Chem. 2061:12114–12119.

  • Martin-Tanguy J. 2001. Metabolism and function of polyamines in plants: recent development (new approaches). Plant Growth Regul. 34: 135–148.

    Article  CAS  Google Scholar 

  • Mehlhorn H. 1990. Ethylene- promoted ascorbate peroxidase activity protects plants against hydrogen peroxide, ozone and paraquat. Plant, Cell and Environ. 13: 971–976.

    Article  CAS  Google Scholar 

  • Noctor G., Arisi A.M., Jouanin L., Kunert K.J., Rennenberg H., Foyer C. 1998. Glutathione: biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants. J. Exp. Bot. 49: 623–647.

    Article  CAS  Google Scholar 

  • Noguchi T., Hayashi H., Tasumi H. 1990. Factors controlling the efficiency of energy transfer from carotenoids to bacteriochlorophyll in purple photosynthetic bacteria. Biochem. Biophys. Acta. 1017: 280–290.

    Article  CAS  Google Scholar 

  • Ormrod D.P., Beckerson D.W. 1986. Polyamines as antiozonants for tomato. Hort. Scien. 21: 1070–1071.

    CAS  Google Scholar 

  • Padh H. 1990. Cellular functions of ascorbic acid. Biochem. and Cell Biol. 68: 1166–1173.

    Article  CAS  Google Scholar 

  • Panagiotidis C.A., Artandi S., Calame K., Silverstein S.J. 1995. Polyamines alter sequence-specific DNA protein interactions. Nucleic Acids Res. 23: 1800–1809.

    Article  PubMed  CAS  Google Scholar 

  • Pastori G.M., Trippi V.S. 1992. Oxidative stress induces high rate of glutathione reductase synthesis in a drought-resistant maize strain. Plant Cell Physiol. 33: 957–961.

    CAS  Google Scholar 

  • Rodriguez R., Sanchez T.R. 1982. Peroxidase and IAA oxidase in germinating seeds of Cicer arietinum L. Rev. Esp. Fisiol. 38: 183–188.

    PubMed  CAS  Google Scholar 

  • Sakaki T., Kondo N., Sugahara K. 1983. Breakdown of photosynthetic pigments and lipids in spinach leaves with ozone fumigation: role of active oxygens. Phsiol. Plant. 50: 28–34.

    Article  Google Scholar 

  • Sreenivasulu N., Ramanjulu S., Ramachandra-Kini K., Prakash H.S., Shekar-Shetty H., Savithri H.S. 1999. Total peroxidase activity and peroxidase isoforms as modified by salt stress in two cultivars of foxtail millet with differential salt tolerance. Plant Science 141:1–9.

    Article  CAS  Google Scholar 

  • Shaaltiel Y., Glazer A., Bocion P.F., Gressel J. 1988. Cross tolerance to herbicidal and environmental oxidants of plant biotypes tolerant to paraquat, sulfur dioxide and ozone. Pest. Biochem. and Physiol. 31: 13–23.

    Article  CAS  Google Scholar 

  • Shieh H.H., Sweet T.R. 1979. Spectrophotometric determination of ascorbic acid. Anal. Biochem. 96: 1–5.

    Article  PubMed  CAS  Google Scholar 

  • Tadolini B. 1988. Polyamine inhibition of lipoperoxidation: The influence of polyamines on iron oxidation in the presence of compounds mimicking phospholipid polar heads. Biochem J. 249: 33–36.

    PubMed  CAS  Google Scholar 

  • Tanaka K., Furusawa I., Kondo N., Tanaka K. 1988. SO2 tolerance of tobacco plants regenerated from paraquat-tolerant callus. Plant Cell Physiol. 29: 743–746.

    CAS  Google Scholar 

  • Thompson J.E., Ledge R.L., Barber R.F. 1987. The role of free radicals in senescence and wounding. New Phytol. 105: 317–344.

    Article  CAS  Google Scholar 

  • Tiburcio A.F., Altabella T., Borrel T., Masgrau C. 1997. Polyamines metabolism and its regulation. Physiol. Plant. 100: 664–674.

    Article  CAS  Google Scholar 

  • Velikova V., Yordanov I., Edreva A. 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants. Protective role of exogenous polyamines. Plant Science 151: 59–66.

    Article  CAS  Google Scholar 

  • Ye B., Müller H.H., Zhang J., Gressel J. 1997. Constitutively elevated levels of putrescine and putrescinegenerating enzymes correlated with oxidant stress resistance in Conyza bonariensis and wheat. Plant Physiol. 115: 1443–1451

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuran Durmu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Durmu, N., Kadioğlu, A. Spermine and putrescine enhance oxidative stress tolerance in maize leaves. Acta Physiol Plant 27, 515–522 (2005). https://doi.org/10.1007/s11738-005-0057-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-005-0057-8

Key words

Navigation