Skip to main content
Log in

Carbohydrate and free amino acid contents in tomato plants grown in media with bicarbonate and nitrate or ammonium

  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Tomato plants were cultivated (from 2 to 23 days after germination) in media with NO 3 , NH +4 , or a mixture of both forms in different proportions used as the N source given with or without 5 mol dm−3 HCO 3 . The accumulation of soluble sugars (reducing sugars and sucrose) and free amino acids was higher in the roots and leaves of NH +4 -fed plants than in NO 3 -fed plants. Starch accumulation in NH +4 -fed plants was higher in leaves (about 28%) and lower in roots (about 37%) in comparison with that of NO 3 -fed plants. Plants cultivated in media containing a mixture of NO 3 /NH +4 were characterized by a lower content of sugars and amino acids accumulation in comparison with that in plants fed with NO 3 or NH +4 . An elevated HCO 3 concentration in the rhizosphere stimulated the accumulation of soluble sugars and free amino acids in all the experimental variants. There were only small differences in the starch content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DAG:

day after germination

DIC:

dissolved inorganic carbon

DW:

dry matter

PEPc:

phosphoenolpyruvate carboxylase

References

  • Arnozis P.A., Nelemans J.A., Findenegg G.R. 1988. Phosphoenolpyruvate carboxylase activity in plants grown with either NO 3 or NH +4 as inorganic nitrogen source. J. Plant Physiol., 132: 23–27.

    CAS  Google Scholar 

  • Ben-Zioni A., Vaadia Y., Lips S.H. 1971. Nitrate uptake by roots as regulated by nitrate reduction products of the shoots. Physiol. Plant., 24: 288–290.

    Article  CAS  Google Scholar 

  • Bialczyk J., Lechowski Z. 1992. Absorption of HCO 3 by roots and its effect on carbon metabolism of tomato. J. Plant Nutr., 15: 293–312.

    CAS  Google Scholar 

  • Bialczyk J., Lechowski Z. 1995. Chemical composition of xylem sap of tomato grown on the media containing HCO 3 .J. Plant Nutr., 18: 2005–2021.

    CAS  Google Scholar 

  • Bialczyk J., Lechowski Z., Dziga D. 2004 a. Composition of the xylem sap of tomato seedlings cultivated on media with HCO 3 and N-source as nitrate or ammonium Plant Soil, 263: 265–272.

    Article  CAS  Google Scholar 

  • Bialczyk J., Lechowski Z., Libik A. 1994. Growth of tomato seedlings under different HCO 3 concentration in the medium. J. Plant Nutr., 17: 801–816.

    CAS  Google Scholar 

  • Bialczyk J., Lechowski Z., Libik A. 2004b. Early vegetative growth of tomato plants in media containing nitrogen source as nitrate, ammonium, or various nitrate-ammonium mixtures with bicarbonate addition. J. Plant Nutr., 27: 1687–1700.

    Article  CAS  Google Scholar 

  • Blacqui re T., Hofstra R., Stulen I. 1987. Ammonium and nitrate nutrition in Plantago lanceolata and Plantago major L. spp. major. I. Aspects of growth, chemical composition and root respiration. Plant and Soil, 104: 129–141.

    Article  Google Scholar 

  • Cao W., Tibbits W. 1993. Study of various NH +4 /NO 3 mixtures for enhancing growth of potatoes. J. Plant Nutr., 16: 1691–1704.

    PubMed  CAS  Google Scholar 

  • Chaillou S., Vessey J.K., Morot-Gaudry J.F., Raper C.D., Henry L.T., Boutin J.P. 1991. Expression of characteristics of ammonium nutrition as affected by pH of the root medium. J. Exp. Bot., 42: 189–196.

    Article  PubMed  CAS  Google Scholar 

  • Chen C.M. 1997. Cytokinin biosynthesis and interconversion. Physiol. Plant., 101: 665–673.

    Article  CAS  Google Scholar 

  • Claussen W., Lenz F. 1995. Effect of ammonium and nitrate on net photosynthesis, flower formation, growth and yield of eggplants (Solanum melongena L.). Plant Soil, 171: 267–274.

    Article  CAS  Google Scholar 

  • Cramer M.D., Lewis O.A.M., Lips S.H. 1993. Inorganic carbon fixation and metabolism in maize roots as affected by nitrate and ammonium nutrition. Physiol. Plant., 89: 632–639.

    Article  Google Scholar 

  • Cramer M.D., Lips S.H. 1995. Enriched rhizosphere CO2 concentrations can ameliorate the influence of salinity on hydroponically grown tomato plants. Physiol. Plant., 94: 425–432.

    Article  CAS  Google Scholar 

  • Cramer M.D., Schierholt A., Wang Y.Z., Lips S.H. 1995. The influence of salinity on the utilization of root anaplerotic carbon and nitrogen metabolism in tomato seedlings. J. Exp. Bot., 46: 1569–1577.

    Article  CAS  Google Scholar 

  • Cramer M.D., Richards M.B. 1999. The effect of rhizosphere dissolved carbon on the growth of tomato seedlings. J. Exp. Bot., 50: 79–87.

    Article  CAS  Google Scholar 

  • Cramer M.D., Titus C.H.A. 2001. Elevated root zone dissolved inorganic carbon can ameliorate aluminium toxicity in tomato seedlings. New Phytol., 152: 29–39.

    Article  CAS  Google Scholar 

  • Hibberd J., Quick W.P. 2003. Characteristics of C4 photosynthesis in stems and petioles of C3 flowering plants. Nature, 415: 451–454.

    Article  CAS  Google Scholar 

  • Ikeda M., Mizoguchi K., Tamakawa T. 1992. Stimulation of carbon fixation in rice and tomato roots by application of ammonium nitrogen. Soil Sci. Plant Nutr., 38: 315–322.

    CAS  Google Scholar 

  • Jermyn M.A. 1975. Increasing the sensitivity of the anthrone method for carbohydrate. Anal. Bioch., 68: 332–335.

    Article  CAS  Google Scholar 

  • Magalhäes J.R., Huber D.M. 1989. Ammonium assimilation in different plant species as affected by nitrogen form and pH control in solution culture. Fert. Res., 21: 1–6.

    Article  Google Scholar 

  • Magalhäes J.R., Wilcox G.E. 1984. Growth, free amino acids, and mineral composition of tomato plants in relation to nitrogen form and growing media. J. Am. Soc. Hort. Sci., 109: 406–411.

    Google Scholar 

  • Moore S. 1968. Amino acid analysis: aqueous dimethyl sulfoxide as solvent for the ninhydrin reaction. J. Biol. Chem., 243: 6281–6283.

    PubMed  CAS  Google Scholar 

  • Morris D.A., Arthur E.D. 1985. Invertase activity, carbohydrate metabolism and cell expansion in the stem of Phaseolus vulgaris L. J. Exp. Bot., 36: 623–633.

    Article  CAS  Google Scholar 

  • Qi J., Marshall J.D., Mattson K.G. 1994. High soil carbon dioxide concentrations inhibit root respiration of Douglas fir. New Phytol., 128: 435–442.

    Article  Google Scholar 

  • Raab T.K., Terry N. 1994. Nitrogen source regulation of growth and photosynthesis in Beta vulgaris L. Plant Physiol., 105: 1159–1166

    PubMed  CAS  Google Scholar 

  • Rosnitschek-Schimmel I. 1985. The influence of nitrogen nutrition on the accumulation of free amino acids in root tissue of Urtica dioica and their apical transport of xylem sap. Plant Cell Physiol., 26: 215–219.

    CAS  Google Scholar 

  • Salsac L., Chaillou S., Morot-Gaudry J.F., Lesaint C., Jolivet E. 1987. Nitrate and ammonium nutrition in plants. Plant Physiol. Biochem., 25: 805–812.

    Google Scholar 

  • Schweizer P., Erismann K.H. 1985. Effect of nitrate and ammonium nutrition of non-nodulated Phaseolus vulgaris L. on phosphoenolpyruvate carboxylase and pyruvate kinase activity. Plant Physiol., 78: 455–458.

    PubMed  CAS  Google Scholar 

  • Siddiqi M.Y., Molhotra B., Min X., Glass A.D.M. 2002. Effects of ammonium and inorganic carbon enrichment on growth and yield of a hydroponic tomato crop. J. Plant Nutr. Soil Sci., 165: 191–197.

    Article  CAS  Google Scholar 

  • Smiciklas K.D., Below F.E. 1992. Role of cytokinins in enhanced productivity of maize supplied with NH +4 and NO 3 . Plant Soil, 142: 185–189.

    Article  Google Scholar 

  • Thibaud J.B., Dawidian J.C., Sentenec H., Soler A., Grignon C. 1988. H+ cotransports in corn roots as related to the surface pH shift induced by active H+ excretion. Plant Physiol., 88: 1469–1473.

    Article  PubMed  CAS  Google Scholar 

  • Van der Merwe C.A., Cramer M.D. 2000. Effects of enriched rizosphere carbon dioxide on nitrate and ammonium uptake in hydroponically grown tomato plants. Plant Soil, 221: 5–11.

    Article  Google Scholar 

  • Van der Westhuizen M.M., Cramer M.D. 1998. The influence of elevated rhizosphere dissolved inorganic carbon concentrations on respiratory O2 and CO2 flux in tomato roots. J. Exp. Bot., 49: 1977–1985.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Bialczyk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bialczyk, J., Lechowski, Z., Dziga, D. et al. Carbohydrate and free amino acid contents in tomato plants grown in media with bicarbonate and nitrate or ammonium. Acta Physiol Plant 27, 523–529 (2005). https://doi.org/10.1007/s11738-005-0058-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-005-0058-7

Key words

Navigation