Skip to main content
Log in

Plant pigments: the many faces of light perception

  • Review
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Good reviews have been published over the years regarding many aspects of plant response to light, such as important advances in understanding the molecular mechanisms of light perception, signaling and control of gene expression by the photoreceptors. Moreover, many efforts have been undertaken on the manipulation of these mechanisms to improve horticultural crop production. In this paper we present an overview about the photoreceptors, the relationship between their absorptive and reflective properties and their control of plant development as well perspectives focused on photomorphogenesis manipulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

B:

Blue light

FR:

Far-red light

R:

Red light

UV:

Ultraviolet light

References

  • Ahmad M, Cashmore AR (1993) HY4 gene of A. thaliana encodes a protein with characteristics of a B-light photoreceptor. Nature 366:162–166

    Article  CAS  PubMed  Google Scholar 

  • Ahmad M, Grancher N, Heil M, Black RC, Giovani B, Galland P, Lardemer D (2002) Action spectrum for cryptochrome-dependent hypocotyl growth inhibition in Arabidopsis. Plant Physiol 129:774–785

    Article  CAS  PubMed  Google Scholar 

  • Alba RC, Valenzano J, Kays SJ, Cordonnier-Pratt M-M, Pratt LH (1999) Genetic manipulation of phytochromes in tomato (Lycopersicon esculentum Mill.): a novel approach to crop improvement. Acta Hortic 487:93–98

    Google Scholar 

  • Aphalo PJ (2001) Light signals and the growth and development of plants—a gentle introduction. The plant photobiology notes, no. 1. Faculty of Forestry, University of Joensuu, 34 pp

  • Appenroth KJ, Lenk G, Goldau L, Sharma R (2006) Tomato seed germination: regulation of different response modes by phytochrome B2 and phytochrome A. Plant Cell Environ 29:701–709

    Article  CAS  PubMed  Google Scholar 

  • Arruda MAZ, Azevedo RA (2009) Metallomics and chemical speciation: towards a better understanding of metal-induced stress in plants. Ann Appl Biol 155:301–307

    Article  CAS  Google Scholar 

  • Banerjee R, Batschauer A (2005) Plant B light receptors. Planta 220:498–502

    Article  CAS  PubMed  Google Scholar 

  • Boccalandro HE, Ploschuk EL, Yanovsky MJ, Sánchez RA, Gatz C, Casal JJ (2003) Increased phytochrome B alleviates density effects on tuber yield of field potato crops. Plant Physiol 133:1539–1546

    Article  CAS  PubMed  Google Scholar 

  • Boccalandro HE, Rugnone ML, Moreno JE, Ploschuk EL, Serna L, Yanovsky MJ, Casal JJ (2009) Phytochrome B enhances photosynthesis at the expense of water-use efficiency in Arabidopsis. Plant Physiol 150:1083–1092

    Article  CAS  PubMed  Google Scholar 

  • Bouly JP, Schleicher E, Dionisio-Sese M, Vandenbussche F, Van Der Straeten D, Bakrim N, Meier S, Batschauer A, Galland P, Bittl R, Ahmad M (2007) Cryptochrome B light photoreceptors are activated through interconversion of flavin redox states. J Biol Chem 282:9383–9391

    Article  CAS  PubMed  Google Scholar 

  • Briggs WR (2006) B/UV-A receptors: historical overview. In: Schäfer E, Nagy F (eds) Photomorphogenesis in plants and bacteria: function and signal transduction mechanisms, 3rd edn. Springer, Dorcrecht, pp 171–197

    Chapter  Google Scholar 

  • Calvenzani V, Martinelli M, Lazzeri V, Giuntini D, Dall’Asta C, Galaverna G, Tonelli C, Ranieri A, Petroni K (2010) Response of wild-type and high pigment-1 tomato fruit to UV-B depletion: flavonoid profiling and gene expression. Planta 231:755–765

    Article  CAS  PubMed  Google Scholar 

  • Carvalho RF, Quecini V, Peres LEP (2010) Hormonal modulation of photomorphogenesis-controlled anthocyanin accumulation in tomato (Solanum lycopersicum L. cv Micro-Tom) hypocotyls: physiological and genetic studies. Plant Sci 178:254–258

    Article  Google Scholar 

  • Casal JJ, Sanchez RA, Deregibus VA (1986) The effect of plant density on tillering: the involvement of red–far-red ratio and the proportion of radiation intercepted per plant. Environ Exp Bot 26:365–372

    Article  Google Scholar 

  • Cazetta E, Schaefer HM, Galetti M (2007) Why are fruits colorful? The relative importance of achromatic and chromatic contrasts for detection by birds. Evol Ecol 23:233–244

    Article  Google Scholar 

  • Chen M, Chory J, Fankhauser C (2004) Light signal transduction in higher plants. Annu Rev Genet 38:87–117

    Article  CAS  PubMed  Google Scholar 

  • Cunningham FX (2002) Regulation of carotenoid synthesis and accumulation in plants. Pure Appl Chem 74:1409–1417

    Article  CAS  Google Scholar 

  • de Lucas M, Davière JM, Rodríguez-Falcón M, Pontin M, Iglesias-Pedraz JM, Lorrain S, Fankhauser C, Blázquez MA, Titarenko E, Prat S (2008) A molecular framework for light and gibberellin control of cell elongation. Nature 451:480–486

    Article  PubMed  Google Scholar 

  • Devlin PF, Christie JM, Terry MJ (2007) Many hands make light work. J Exp Bot 58:3071–3077

    Article  CAS  PubMed  Google Scholar 

  • Dorn LA, Hammond Pyle E, Schmitt J (2000) Plasticity to cues and resources in Arabidopsis thaliana: testing for adaptive value and costs. Evolution 54:1982–1994

    CAS  PubMed  Google Scholar 

  • El-Assal SE, Alonso-Blanco C, Peeters AJM, Wagemaker CW, Weller JL, Koornneef M (2003) The role of cryptochrome 2 in the control of flowering in Arabidopsis. Plant Physiol 133:1504–1516

    Article  CAS  Google Scholar 

  • Fairchild CD, Schumaker MA, Quail PH (2000) HFR1 encodes an atypical bHLH protein that acts in phytochrome A signal transduction. Genes Dev 14:2377–2391

    CAS  PubMed  Google Scholar 

  • Finlayson SA, Krishnareddy SR, Kebrom TH, Casal JJ (2010) Phytochrome regulation of branching in Arabidopsis. Plant Physiol 152:1914–1927

    Article  CAS  PubMed  Google Scholar 

  • Franklin KA, Whitelam GC (2005) Phytochromes and shade-avoidance responses in plants. Ann Bot 96:169–175

    Article  CAS  PubMed  Google Scholar 

  • Galland P (2001) Phototropism in Phycomyces. In: Häder DP, Lebert M (eds) Photomovement. comprehensive series in photosciences, vol 1. Elsevier, Amsterdam, pp 621–657

    Google Scholar 

  • Garg AK, Sawers RJ, Wang H, Kim JK, Walker JM, Brutnell TP, Parthasarathy MV, Vierstra RD, Wu RJ (2006) Light-regulated overexpression of an Arabidopsis phytochrome A gene in rice alters plant architecture and increases grain yield. Planta 223:627–636

    Article  CAS  PubMed  Google Scholar 

  • Giliberto L, Perrotta G, Pallara P, Weller JL, Fraser P, Bramley PM, Fiore A, Tavazza M, Giuliano G (2005) Manipulation of the B light photoreceptor cryptochrome 2 in tomato affects vegetative development, flowering time and fruit antioxidant content. Plant Physiol 137:199–208

    Article  CAS  PubMed  Google Scholar 

  • Gould KS (2004) Nature’s swiss army knife: the diverse protective roles of anthocyanins in leaves. J Biomed Biotechnol 5:314–320

    Article  Google Scholar 

  • Gratão PL, Polle A, Lea PJ, Azevedo RA (2005) Making the life of heavy metal-stressed plants a little easier. Funct Plant Biol 32:481–494

    Article  Google Scholar 

  • Gratão PL, Monteiro CC, Antunes AM, Peres LEP, Azevedo RA (2008) Acquired tolerance of tomato (Lycopersicon esculentum cv. Micro-Tom) plants to cadmium-induced stress. Ann Appl Biol 153:321–333

    Article  Google Scholar 

  • Grotewold E (2006) The genetics and biochemistry of floral pigments. Annu Rev Plant Biol 57:761–780

    Article  CAS  PubMed  Google Scholar 

  • Haliapas S, Yupsanis TA, Syros TD, Kofidis G, Economou AS (2008) Petunia × hybrida during transition to flowering as affected by light intensity and quality treatments. Acta Physiol Plant 30:807–815

    Article  CAS  Google Scholar 

  • Halliday KJ, Fankhauser C (2003) Phytochrome-hormonal signaling networks. New Phytol 157:449–463

    Article  CAS  Google Scholar 

  • Hoch WA, Zeldin EL, McCown BH (2001) Physiological significance of anthocyanins during autumnal leaf senescence. Tree Physiol 21:1–8

    CAS  PubMed  Google Scholar 

  • Jackson JA, Jenkins GI (1995) Extension-growth responses and expression of flavonoid biosynthesis genes in the Arabidopsis hy4 mutant. Planta 197:233–239

    Article  CAS  PubMed  Google Scholar 

  • Jiao Y, Lau OS, Deng XW (2007) Light-regulated transcriptional networks in higher plants. Nat Rev Genet 8:217–230

    Article  CAS  PubMed  Google Scholar 

  • Josse EM, Halliday KJ (2007) Photoreceptor interactions with other signals. In: Whitelam GC, Halliday KJ (eds) Light and plant development. Annual Plant Reviews, vol 30. Blackwell, Oxford, 325 pp

  • Kasperbauer MJ, Loughrin JH (2004) Butterbean seed yield, color, and protein content are affected by photomorphogenesis. Crop Sci 44:2123–2126

    Article  Google Scholar 

  • Kebrom TH, Burson BL, Finlayson SA (2006) Phytochrome B represses Teosinte Branched1 expression and induces sorghum axillary bud outgrowth in response to light signals. Plant Physiol 140:1109–1117

    Article  CAS  PubMed  Google Scholar 

  • Kevei E, Gyula P, Hall A, Kozma-Bognar L, Kim WY, Eriksson ME, Toth R, Hanano S, Feher B, Southern MM (2006) Forward genetic analysis of the circadian clock separates the multiple functions of ZEITLUPE. Plant Physiol 140:933–945

    Article  CAS  PubMed  Google Scholar 

  • Kim WY, Hicks KA, Somers DE (2005a) Independent roles for early FLOWERING 3 and ZEITLUPE in the control of circadian timing, hypocotyl length, and flowering time. Plant Physiol 139:1557–1569

    Article  CAS  PubMed  Google Scholar 

  • Kim GT, Yano S, Kozuka T, Tsukaya H (2005b) Photomorphogenesis of leaves: shade-avoidance and differentiation of sun and shade leaves. Photochem Photobiol Sci 4:770–774

    Article  CAS  PubMed  Google Scholar 

  • Kliebenstein DJ, Lim JE, Landry LG, Last RL (2002) Arabidopsis UVR8 regulates UV-B signal transduction and tolerance and contains sequence similarity to human Regulator of Chromatin Condensation 1. Plant Physiol 130:234–243

    Article  CAS  PubMed  Google Scholar 

  • Kolotilin I, Koltai H, Tadmor Y, Bar-Or C, Reuveni M, Meir A, Nahon S, Shlomo H, Chen L, Levin I (2007) Transcriptional profiling of high pigment-2dg tomato mutant links early fruit plastid biogenesis with its overproduction of phytonutrients. Plant Physiol 145:389–401

    Article  CAS  PubMed  Google Scholar 

  • Konczak I, Zhang W (2004) Anthocyanins—more than nature’s colours. J Biomed Biotech 2004:239–240

    Article  Google Scholar 

  • Koornneef M, Rolf E, Spruit CJP (1980) Genetic control of light-inhibited hypocotyl elongation in Arabidopsis thaliana. Z Pflanzenphysiol 100:147–160

    Google Scholar 

  • Koornneef M, Cone JW, Dekens RG, O’Herne-Robers EG, Spruit CJP, Kendrick RE (1985) Photomorphogenic response of long-hypocotyl mutants of tomato. J Plant Physiol 120:153–165

    CAS  Google Scholar 

  • Kurepin LV, Walton LJ, Reid DM (2007) Interaction of red to far red light ratio and ethylene in regulating stem elongation of Helianthus annuus. J Plant Growth Regul 51:53–61

    Article  CAS  Google Scholar 

  • Levin I, Frankel P, Gilboa N, Tanny S, Lalazar A (2003) The tomato dark green mutation is a novel allele of the tomato homolog of the DEETIOLATED1 gene. Theor Appl Genet 106:454–460

    CAS  PubMed  Google Scholar 

  • Li Z, Wakao S, Fischer BB, Niyogi KK (2009) Sensing and responding to excess light. Annu Rev Plant Biol 60:239–260

    Article  CAS  PubMed  Google Scholar 

  • Lieberman M, Segev O, Gilboa N, Lalazar A, Levin I (2004) The tomato homolog of the gene encoding UV-damaged DNA binding protein 1 (DDB1) underlined as the gene that causes the high pigment-1 mutant phenotype. Theor Appl Genet 108:1574–1581

    Article  CAS  PubMed  Google Scholar 

  • Liscum E, Stowe-Evans EL (2000) Phototropism: a ‘simple’ physiological response modulated by multiple interacting photosensory-response pathways. Photochem Photobiol 72:273–282

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Roof S, Ye Z, Barry C, van Tuinen A, Vrebalov J, Bowler C, Giovannoni J (2004) Manipulation of light signal transduction as a means of modifying fruit nutritional quality in tomato. Proc Natl Acad Sci USA 101:9897–9902

    Article  CAS  PubMed  Google Scholar 

  • Mazzella MA, Alconada Magliano TM, Casal JJ (1997) Dual effect of phytochrome A on hypocotyl growth under continuous red light. Plant Cell Environ 20:261–267

    Article  CAS  Google Scholar 

  • Mockler T, Yang H, Yu X, Parikh D, Cheng YC, Dolan S, Lin C (2003) Regulation of photoperiodic flowering by Arabidopsis photoreceptors. Proc Natl Acad Sci USA 100:2140–2145

    Article  CAS  PubMed  Google Scholar 

  • Möglich A, Yang X, Ayers RA, Moffat K (2010) Structure and function of plant photoreceptors. Annu Rev Plant Biol 61:6.1–6.27

    Article  Google Scholar 

  • Moreno JE, Tao Y, Chory J, Ballaré CL (2009) Ecological modulation of plant defense via phytochrome control of jasmonate sensitivity. Proc Natl Acad Sci USA 106:4935–4940

    Article  CAS  PubMed  Google Scholar 

  • Muleo R, Morini S (2008) Physiological dissection of blue and red light regulation of apical dominance and branching in M9 apple rootstock growing in vitro. J Plant Physiol 165:1838–1846

    Article  CAS  PubMed  Google Scholar 

  • Neff MM, Street IH, Turk EM, Ward JM (2006) Interaction of light and hormone signalling to mediate photomorphogenesis. In: Schäfer FN (ed) Photomorphogenesis in plants and bacteria, 3rd edn. Springer, Dordrecht, pp 439–473

    Chapter  Google Scholar 

  • Quail PH (2007) Phytochrome-regulated gene expression. J Integr Plant Biol 49:11–20

    Article  CAS  Google Scholar 

  • Rajapakse NC, Shahak Y (2007) Light quality manipulation by horticulture industry. In: Whitelam G, Halliday K (eds) Light and plant development. Blackwell, UK, pp 290–312

    Chapter  Google Scholar 

  • Sakai T, Kagawa T, Kasahara M, Swartz TE, Christie JM, Briggs WR, Wada M, Okada K (2001) Arabidopsis nph1 and npl1: B light receptors that mediate both phototropism and chloroplast relocation. Proc Natl Acad Sci USA 98:6969–6974

    Article  CAS  PubMed  Google Scholar 

  • Schittenhelm S, Menge-Hartmann U, Oldenburg E (2004) Photosynthesis, carbohydrate metabolism, and yield of phytochrome-B-overexpressing potatoes under different light regimes. Crop Sci 44:131–143

    Article  CAS  Google Scholar 

  • Schmitt J, Stinchcombe JR, Heschel MS, Huber H (2003) The adaptive evolution of plasticity: phytochrome-mediated shade avoidance responses. Integr Comp Biol 43:459–469

    Article  Google Scholar 

  • Schultz TF (2005) The ZEITLUPE family of putative photoreceptors. In: Briggs WR, Spudich JL (eds) Handbook of photosensory photoreceptors. Wiley, Weinheim, pp 337–347

    Chapter  Google Scholar 

  • Schwinn KE, Davies KM (2004) Flavonoids. In: Davies K (ed) Plant pigments and their manipulation. Blackwell, Oxford, pp 92–149

    Google Scholar 

  • Shahak Y, Gussakovsky EE, Gal E, Ganelevin R (2004) ColorNets: crop protection and light-quality manipulation in one technology. Acta Hortic 659:143–151

    Google Scholar 

  • Shen H, Luong P, Huq E (2007) The F-Box protein MAX2 functions as a positive regulator of photomorphogenesis in Arabidopsis. Plant Physiol 145:1471–1483

    Article  CAS  PubMed  Google Scholar 

  • Shen H, Zhu L, Castillon A, Majee M, Downie B, Huq E (2008) Light-induced phosphorylation and degradation of the negative regulator PHYTOCHROME-INTERACTING FACTOR1 from Arabidopsis depend upon its direct physical interactions with photoactivated phytochromes. Plant Cell 20:1586–1602

    Article  CAS  PubMed  Google Scholar 

  • Shin KS, Murthy HN, Heo JH, Hahn EJ, Paek KY (2008) The effect of light quality on the growth and development of in vitro cultured Doritaenopsis plants. Acta Physiol Plant 30:339–343

    Article  CAS  Google Scholar 

  • Shin J, Kim K, Kang H, Zulfugarov IS, Bae G, Lee C-H, Lee D, Choi G (2009) Phytochromes promote seedling light responses by inhibiting four negatively-acting phytochrome-interacting factors. Proc Natl Acad Sci USA 106:7660–7665

    Article  CAS  PubMed  Google Scholar 

  • Somers DE, Kim WY, Geng R (2004) The F-box protein ZEITLUPE confers dosage-dependent control on the circadian clock, photomorphogenesis, and flowering time. Plant Cell 16:769–782

    Article  CAS  PubMed  Google Scholar 

  • Spalding EP, Folta KM (2005) Illuminating topics in plant photobiology. Plant Cell Environ 28:39–53

    Article  CAS  Google Scholar 

  • Suetsugu N, Wada M (2003) Cryptochrome B-light photoreceptors. Curr Opin Plant Biol 6:91–96

    Article  CAS  PubMed  Google Scholar 

  • Sullivan JA, Deng XW (2003) From seed to seed: the role of photoreceptors in Arabidopsis development. Dev Biol 260:289–297

    Article  CAS  PubMed  Google Scholar 

  • Talbott LD, Zhu J, Han SW, Zeiger E (2002) Phytochrome and B light-mediated stomatal opening in the orchid, Paphiopedilum. Plant Cell Physiol 43:639–646

    Article  CAS  PubMed  Google Scholar 

  • Tanada T (1997) The photoreceptors in the high irradiance response of plants. Physiol Plant 101:451–454

    Article  CAS  Google Scholar 

  • Tepperman JM, Hudson ME, Khanna R, Zhu T, Chang SH, Wang X, Quail PH (2004) Expression profiling of phyB mutant demonstrates substantial contribution of other phytochromes to red-light-regulated gene expression during seedling de-etiolation. Plant J 38:725–739

    Article  CAS  PubMed  Google Scholar 

  • Tepperman JM, Hwang YS, Quail PH (2006) phyA dominates in transduction of red-light signals to rapidly responding genes at the initiation of Arabidopsis seedling de-etiolation. Plant J 48:728–742

    Article  CAS  PubMed  Google Scholar 

  • Torres CA, Andrews PK, Davies NM (2006) Physiological and biochemical responses of fruit exocarp of tomato (Lycopersicon esculentum Mill.) mutants to natural photo-oxidative conditions. J Exp Bot 57:1933–1947

    Article  CAS  PubMed  Google Scholar 

  • Van Tuinen A, Kerckhoffs LHJ, Nagatani A, Kendrick RE, Koornneef M (1995a) Far-red light-insensitive, phytochrome A-deficient mutants of tomato. Mol Gen Genet 246:133–141

    Article  PubMed  Google Scholar 

  • Van Tuinen A, Kerckhoffs LHJ, Nagatani A, Kendrick RE, Koornneef M (1995b) A temporary red light-insensitive mutant of tomato lacks a light-stable, B-like phytochrome. Plant Physiol 108:939–957

    PubMed  Google Scholar 

  • Vandenbussche F, Habricot Y, Condiff AS, Maldiney R, Van der Straeten D, Ahmad M (2007) HY5 is a point of convergence between cryptochrome and cytokinin signalling pathways in Arabidopsis thaliana. Plant J 49:428–441

    Article  CAS  PubMed  Google Scholar 

  • Weller JL, Hecht V, Vander Schoor JK, Davidson SE, Ross JJ (2009) Light regulation of gibberellin biosynthesis in pea is mediated through the COP1/HY5 pathway. Plant Cell 21:800–813

    Article  CAS  PubMed  Google Scholar 

  • Zhai Q, Li CB, Zheng W, Wu X, Zhao J, Zhou G, Jiang H, Sun J, Lou Y, Li C (2007) Phytochrome chromophore deficiency leads to overproduction of jasmonic acid and elevated expression of jasmonate-responsive genes in Arabidopsis. Plant Cell Physiol 48:1061–1071

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the Fundação de Amparo à Pesquisa do Estado de São Paulo, the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq-Brazil), the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES-Brazil) for financial support over the years and Dr. Vera Quecini, CNPUV-EMBRAPA, RS, Brazil, for the critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Antunes Azevedo.

Additional information

Communicated by A. Kononowicz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carvalho, R.F., Takaki, M. & Azevedo, R.A. Plant pigments: the many faces of light perception. Acta Physiol Plant 33, 241–248 (2011). https://doi.org/10.1007/s11738-010-0533-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-010-0533-7

Keywords

Navigation