Skip to main content
Log in

Seed priming for abiotic stress tolerance: an overview

  • Review
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Plants are exposed to any number of potentially adverse environmental conditions such as water deficit, high salinity, extreme temperature, submergence, etc. These abiotic stresses adversely affect the plant growth and productivity. Nowadays various strategies are employed to generate plants that can withstand these stresses. In recent years, seed priming has been developed as an indispensable method to produce tolerant plants against various stresses. Seed priming is the induction of a particular physiological state in plants by the treatment of natural and synthetic compounds to the seeds before germination. In plant defense, priming is defined as a physiological process by which a plant prepares to respond to imminent abiotic stress more quickly or aggressively. Moreover, plants raised from primed seeds showed sturdy and quick cellular defense response against abiotic stresses. Priming for enhanced resistance to abiotic stress obviously is operating via various pathways involved in different metabolic processes. The seedlings emerging from primed seeds showed early and uniform germination. Moreover, the overall growth of plants is enhanced due to the seed-priming treatments. The main objective of this review is to provide an overview of various crops in which seed priming is practiced and about various seed-priming methods and its effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abebe AT, Modi AT (2009) Hydropriming in dry bean (Phaseolus vulgaris L.). Res J Seed Sci 2:23–31

    Article  Google Scholar 

  • Afzal I, Basra SMA, Ahmad N, Farooq M (2005) Optimization of hormonal priming techniques for alleviation of salinity stress in wheat (Triticum aestivum L.). Caderno de Pesquisa Série Biologia 17:95–109

    Google Scholar 

  • Agarwal VK, Sinclair JB (1997) Principles of seed pathology. CRC, Boca Raton

    Google Scholar 

  • Akbari G, Sanavy SA, Yousefzadeh S (2007) Effect of auxin and salt stress (NaCl) on seed germination of wheat cultivars (Triticum aestivum L.). Pak J Biol Sci 10:2557–2561

    Article  PubMed  CAS  Google Scholar 

  • Ali NI, Siddiqui IA, Shaukat SS, Zaki MJ (2001) Survival of Pseudomonas aeruginosa in various carriers for the inhibition of root rot–root knot disease complex of mungbean. Phytopathol Mediterr 40:108–112

    Google Scholar 

  • Almansouri M, Kinet JM, Lutts S (2001) Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.). Plant Soil 231:243–254

    Article  CAS  Google Scholar 

  • Al-Mudaris MA, Jutzi SC (1999) The influence of fertilizer based seed priming treatment on emergence and seedling growth of Sorghum bicolor and Pennisetum glaucum in pot trials under greenhouse conditions. J Agron Crop Sci 182:135–141

    Article  CAS  Google Scholar 

  • Amooaghaie R (2011) The effect of hydro and osmopriming on alfalfa seed germination and antioxidant defenses under salt stress. Afr J Biotechnol 10:6269–6275

    Article  CAS  Google Scholar 

  • Amzallag GN, Lerner HR, Poljakoff-Mayber A (1990) Exogenous ABA as a modulator of the response of sorghum to high salinity. J Exp Bot 54:1529–1534

    Article  Google Scholar 

  • Angrish R, Kumar B, Datta KS (2001) Effect of gibberellic acid and kinetin on nitrogen content and nitrate reductase activity in wheat under saline condition. Indian J Plant Physiol 6:172–177

    CAS  Google Scholar 

  • Arif M, Ali S, Shah A, Javed N, Rashid A (2005) Seed priming maize for improving emergence and seedling growth. Sarhad J Agric 21:239–243

    Google Scholar 

  • Arif M, Waqas M, Nawab K, Shahid M (2007) Effect of seed priming in Zn solutions on chickpea and wheat. Afr Crop Sci Conf Proc 8:237–240

    Google Scholar 

  • Arif M, Jan MT, Marwat KB, Khan MA (2008) Seed priming improves emergence and yield of soybean. Pak J Bot 40(3):1169–1177

    Google Scholar 

  • Ashraf M, Bray CM (1993) DNA synthesis in osmoprimed leek (Allium porrum L.) seeds and evidence for repair and replication. Seed Sci Res 3:15–23

    Article  CAS  Google Scholar 

  • Ashraf M, Foolad RM (2005) Pre-sowing seed treatment—a shotgun approach to improve germination, plant growth and crop yield under saline and non-saline conditions. Adv Agron 88:223–271

    Article  Google Scholar 

  • Bailly C, Benamar A, Corbineau C, Côme D (1998) Free radical scavenging as affected by accelerated ageing and subsequent priming in sunflower seeds. Physiol Plant 104:646–652

    Article  CAS  Google Scholar 

  • Bajehbaj AA (2010) The effects of NaCl priming on salt tolerance in sunflower germination and seedling grown under salinity conditions. Afr J Biotechnol 9:1764–1770

    CAS  Google Scholar 

  • Barassi CA, Ayrault G, Creus CM, Sueldo RJ, Sobrero MT (2006) Seed inoculation with Azospirillum mitigates NaCl effects on lettuce. Sci Hortic 109:8–14

    Article  CAS  Google Scholar 

  • Barba-Espín G, Hernández JA, Diaz-Vivancos P (2012) Role of H2O2 in pea seed germination. Plant Signal Behav 7:193–195

    Article  PubMed  CAS  Google Scholar 

  • Bartlett DW, Clough JM, Godwin JR, Hall AA, Hamer M, Parr-Dobrzanski B (2002) The strobilurin fungicides. Pest Manag Sci 58:649–662

    Article  PubMed  CAS  Google Scholar 

  • Basra SMA, Pannu IA, Afzal I (2003) Evaluation of seedling vigor of hydro and matriprimed wheat (Triticum aestivum L.) seeds. Int J Agric Biol 5:121–123

    Google Scholar 

  • Basra SMA, Farooq M, Tabassum R (2005) Physiological and biochemical aspects of seed vigour enhancement treatments in fine rice (Oryza sativa L.). Seed Sci Technol 33:623–628

    Google Scholar 

  • Beckers GJM, Conrath U (2007) Priming for stress resistance: from the lab to the field. Curr Opin Plant Biol 10:425–431

    Article  PubMed  Google Scholar 

  • Bennett MA, Waters L (1987) Seed hydration treatments for improved sweet maize germination and stand establishment. J Am Soc Hortic Sci 112:45–49

    Google Scholar 

  • Bennett AJ, Whipps JM (2008) Dual application of beneficial microorganisms to seed during drum priming. Appl Soil Ecol 38:83–89

    Article  Google Scholar 

  • Bisht C, Badoni A, Vashishtha RK, Nautiyal MC (2009) Photoperiodic effect on seed germination in pyrethrum (Chrysanthemum cinerariaefolium Vis.) under the influence of some growth regulators. J Am Sci 5:147–150

    Google Scholar 

  • Bourgne S, Job C, Job D (2000) Sugarbeet seed priming: solubilization of the basic subunit of 11S globulin in individual seeds. Seed Sci Res 10:153–161

    CAS  Google Scholar 

  • Bradford KJ (1986) Manipulation of seed water relations via osmotic priming to improve germination under stress conditions. Hortic Sci 21:1105–1112

    Google Scholar 

  • Bray EA (1997) Plant responses to water deficit. Trends Plant Sci 2:48–54

    Article  Google Scholar 

  • Bray CM, Davison PA, Ashraf M, Taylor MR (1989) Biochemical events during osmopriming of leek seed. Ann Appl Biol 102:185–193

    Google Scholar 

  • Brocklehurst PA, Dearman J, Drew RLK (1984) Effects of osmotic priming on seed germination and seedling growth in leek. Sci Hortic 24:201–210

    Article  Google Scholar 

  • Bruggink GT, Ooms JJJ, Vander Toorn P (1999) Induction of longevity in primed seeds. Seed Sci Res 9:49–53

    Article  Google Scholar 

  • Butler LH, Hay FR, Ellis RH, Smith RD, Murray TB (2009) Priming and re-drying improve the survival of mature seeds of Digitalis purpurea during storage. Ann Bot 103:1261–1270

    Article  PubMed  CAS  Google Scholar 

  • Cakmak I (2005) The role of potassium in alleviating detrimental effects of abiotic stresses in plants. J Plant Nutr Soil Sci 168:521–530

    Article  CAS  Google Scholar 

  • Callan NW, Mathre DE, Miller JB (1990) Bio-priming seed treatment for biological control of Pythium ultimum pre emergence damping off in sh2 sweet corn. Plant Dis 74:368–372

    Article  Google Scholar 

  • Capanoglu E (2010) The potential of priming in food production. Trends Food Sci Technol 21:399–407

    Article  CAS  Google Scholar 

  • Caseiro R, Bennett MA, Marcos-Filho J (2004) Comparison of three priming techniques for onion seed lots differing in initial seed quality. Seed Sci Technol 32:365–375

    Google Scholar 

  • Casenave EC, Toselli ME (2007) Hydropriming as a pre-treatment for cotton germination under thermal and water stress conditions. Seed Sci Technol 35:88–98

    Google Scholar 

  • Cayuela E, Perez-Alfocea F, Caro M, Bolarin MC (1996) Priming of seeds with NaCl induces physiological changes on tomato plants grown under salt stress. Physiol Plant 96:231–236

    Article  CAS  Google Scholar 

  • Chandler PM, Robertson M (1994) Gene expression regulation by abscisic acid and its relation to stress tolerance. Ann Rev Plant Physiol Plant Mol Biol 45:113–141

    Article  CAS  Google Scholar 

  • Cha-um S, Supaibulwatana K, Kirdmanee C (2006) Water relations, photosynthetic ability and growth of Thai rice (Oryza sativa L. ssp. Indica cv. KDML 105) to salt stress by application of exogenous glycinebetaine and choline. J Agron Crop Sci 192:25–36

    Article  CAS  Google Scholar 

  • Chen K, Arora R (2011) Dynamics of the antioxidant system during seed osmopriming, post-priming germination, and seedling establishment in spinach (Spinacia oleracea). Plant Sci 180:212–220

    Article  PubMed  CAS  Google Scholar 

  • Chen R, Murata N (2002) Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compounds. Curr Opin Plant Biol 5:250–257

    Article  PubMed  CAS  Google Scholar 

  • Chen CC, Sung JM (2001) Priming bitter gourd seeds with selenium solution enhances germinability and antioxidative responses under sub-optimal temperature. Physiol Plant 111:9–16

    Article  CAS  Google Scholar 

  • Chen TY, Lei MG, Suzuki T, Morrison DC (1992) Lipopolysaccharide receptors and signal transduction pathways in mononuclear phagocytes. Curr Top Micro Immunol 181:169–188

    Article  CAS  Google Scholar 

  • Chiu KY, Chuang SJ, Sung JM (2006) Both anti-oxidation and lipid-carbohydrate conversion enhancements are involved in priming-improved emergence of Echinacea purpurea seeds that differ in size. Sci Hortic 108:220–226

    Article  CAS  Google Scholar 

  • Cohen Y, Baider A, Gotilieb D, Rubin E (2007) Control of Bremia lectucae in field-grown lettuce by dl-3-amino-n-butanoic acid (BABA). In: 3rd QLIF congress, Hohenheim, Germany, pp 20–23

  • Conrath U, Beckers GJM, Flors V, Garcia-Agustin P, Jakab G, Mauch F, Newman MA, Pieterse CMJ, Poinssot B, Pozo MJ, Pugin A, Schaffrath U, Ton J, Wendehenne D, Zimmerli L, Mauch-Mani B (2006) Priming: getting ready for battle. Mol Plant Microbe Interact 19:1062–1071

    Article  PubMed  CAS  Google Scholar 

  • Copeland LO, McDonald MB (1995) Principles of seed science and technology, 3rd edn. Chapmann and Hall, USA

    Google Scholar 

  • Cuartero J, Fernandez-Munoz R (1999) Tomato and salinity. Sci Hortic 78:83–125

    Article  CAS  Google Scholar 

  • Cushman JC, Bohnert HJ (2000) Genomic approaches to plant stress tolerance. Curr Opin Plant Biol 3:117–124

    Article  PubMed  CAS  Google Scholar 

  • Das JC, Choudhury AK (1996) Effect of seed hardening, potassium fertilizer, and paraquat as anti-transpirant on rainfed wheat (Triticum aestivum L.). Indian J Agron 41:397–400

    Google Scholar 

  • Demir I, Mavi K (2004) The effect of priming on seedling emergence of differentially matured watermelon (Citrullus lanatus (Thunb.) Matsum and Nakai) seeds. Sci Hortic 102:467–473

    Article  Google Scholar 

  • Demir AO, Goksoy AT, Buyukcangaz H, Turan ZM, Koksal ES (2006) Deficit irrigation of sunflower (Helianthus annuus L.) in a sub-humid climate. Irrig Sci 24:279–289

    Article  Google Scholar 

  • Demir I, Ozuaydın I, Yasar F, Staden JV (2012) Effect of smoke-derived butenolide priming treatment on pepper and salvia seeds in relation to transplant quality and catalase activity. S Afr J Bot 78:83–87

    Article  CAS  Google Scholar 

  • Draganić I, Lekić S (2012) Seed priming with antioxidants improves sunflower seed germination and seedling growth under unfavorable germination conditions. Turk J Agric For 36:421–428

    Google Scholar 

  • Dubrovsky JG (1996) Seed hydration memory in Sonoran desert cacti and its ecological implications. Am J Bot 68:227–233

    Google Scholar 

  • Ehsanfar S, Modarres-Sanavy SA, Tavakkol-Afshari R (2006) Effects of osmopriming on seed germination of canola (Brassica napus L.) under salinity stress. Commun Agric Appl Biol Sci 71:155–159

    PubMed  CAS  Google Scholar 

  • Eisvand HR, Tavakkol-Afshari R, Sharifzadeh F, Maddah Arefi H, Hesamzadeh Hejazi SM (2010) Effects of hormonal priming and drought stress on activity and isozyme profiles of antioxidant enzymes in deteriorated seed of tall wheatgrass (Agropyron elongatum Host). Seed Sci Technol 38:280–297

    Google Scholar 

  • Elkoca E, Haliloglu K, Esitken A, Ercisli S (2007) Hydro- and osmopriming improve chickpea germination. Acta Agric Scand Sect B Soil Plant Sci 57:193–200

    Article  Google Scholar 

  • Farahani HA, Maroufi K (2011) Effect of hydropriming on seedling vigour in basil (Ocimum basilicum L.) under salinity conditions. Adv Environ Biol 5:828–833

    Google Scholar 

  • Farahbakhsh H (2012) Germination and seedling growth in unprimed and primed seeds of fennel as affected by reduced water potential induced by NaCl. Int Res J Appl Basic Sci 3:737–744

    Google Scholar 

  • Farhoudi R, Sharifzadeh F (2006) The effects of NaCl priming on salt tolerance in canola (Brassica napus L.) seedlings grown under saline conditions. Indian J Crop Sci 1:74–78

    Google Scholar 

  • Farooq M, Basra SMA, Hafeez K (2005) Seed invigoration by osmohardening in Indica and Japonica rice. Seed Sci Technol 34(1):181–187

    Google Scholar 

  • Farooq M, Basra SMA, Hafeez K (2006a) Seed invigoration by osmohardening in fine and course rice. Seed Sci Technol 34:181–186

    Google Scholar 

  • Farooq M, Basra SMA, Hefeez-ue-Rehman, Mehmood T (2006b) Germination and early seedling growth as affected by pre sowing ethanol seed treatments in fine rice. Int J Agric Biol 8:19–22

    Google Scholar 

  • Farooq M, Basra SMA, Wahid A (2006c) Priming of field sown rice seed enhances germination, seedling establishment, allometry and yield. Plant Growth Regul 44:28–294

    Google Scholar 

  • Farooq M, Basra SMA, Wahid A, Ahamad N (2010) Changes in nutrient homeostasis and reserve metabolism during rice seed priming: consequences for seedling emergence and growth. Agric Sci China 9:191–198

    Article  CAS  Google Scholar 

  • Finch-Savage WE, Dent KC, Clark LJ (2004) Soak conditions and temperature following sowing influence the response of maize (Zea mays L.) seeds to on-farm priming (pre-sowing seed soak). Field Crops Res 90:361–374

    Article  Google Scholar 

  • Flowers TJ, Garcia A, Koyama M, Yeo AR (1997) Breeding for salt tolerance in crop plants-the role of molecular biology. Acta Physiol Plant 19:427–433

    Article  CAS  Google Scholar 

  • Flowers TJ, Koyama ML, Flowers SA, Sudhakar C, Singh KP, Yeo AR (2000) QTL: their place in engineering tolerance of rice to salinity. J Exp Bot 51:99–106

    Article  PubMed  CAS  Google Scholar 

  • Foti R, Aburenia K, Tigerea A, Gotosab J, Gerec J (2008) The efficacy of different seed priming osmotica on the establishment of maize (Zea mays L.) caryopses. J Arid Environ 72:1127–1130

    Article  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  PubMed  CAS  Google Scholar 

  • Fujikura Y, Kraak HL, Basra AS, Karssen CM (1993) Hydropriming, a simple and in expensive priming method. Seed Sci Technol 21:639–642

    Google Scholar 

  • Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozak K (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol 9:436–442

    Article  PubMed  Google Scholar 

  • Gao YP, Bonham-Smith PC, Gusta LV (2002) The role of peroxiredoxin antioxidant and calmodulin in ABA-primed seeds of Brassica napus exposed to abiotic stresses during germination. J Plant Physiol 159:951–958

    Article  CAS  Google Scholar 

  • Ghana SG, Schillinger WF (2003) Seed priming winter wheat for germination, emergence, and yield. Crop Sci 43:2135–2141

    Article  Google Scholar 

  • Ghassemi-Golezani K, Esmaeilpour B (2008) The effect of salt priming on the performance of differentially matured cucumber (Cucumis sativus) seeds. Not Bot Hort Agrobot Cluj 36:67–70

    CAS  Google Scholar 

  • Guan YJ, Hu J, Wang XJ, Shao CX (2009) Seed priming with chitosan improves maize germination and seedling growth in relation to physiological changes under low temperature stress. J Zhejiang Univ Sci B 10:427–433

    Article  PubMed  CAS  Google Scholar 

  • Güimil S, Chang HS, Zhu T, Sesma A, Osbourn A, Roux C, Ionnidis V, Oakeley EJ, Docquier M, Descombes P, Briggs SP, Paszkowski U (2005) Comparative transcriptomics of rice reveals an ancient pattern of response to microbial colonization. Proc Natl Acad Sci USA 102:8066–8070

    Article  PubMed  CAS  Google Scholar 

  • Gul B, Khan MA (2003) Effect of growth regulators and osmotic in alleviating salinity effects on the germination of Salicornia utahensis. Pak J Bot 35:877–886

    Google Scholar 

  • Gust AA, Brunner F, Nürnberger T (2010) Biotechnological concepts for improving plant innate immunity. Curr Opin Biotechnol 21:204–210

    Article  PubMed  CAS  Google Scholar 

  • Haghpanah A, Younesi O, Moradi A (2009) The effect of priming on seedling emergence of differentially matured sorghum (Sorghum bicolor L.) seeds. J Appl Sci Res 5:729–732

    CAS  Google Scholar 

  • Hancock JT, Neill SJ, Wilson ID (2011) Nitric oxide and ABA in the control of plant function. Plant Sci 181:555–559

    Article  PubMed  CAS  Google Scholar 

  • Harb EZ (1992) Effect of soaking seeds in some growth regulators and micronutrients on growth, some chemical constituents and yield of faba bean and cotton plants. Bull Faculty Agric Univ Cairo 43:429–452

    Google Scholar 

  • Harris D, Joshi A, Kham PA, Khan PA, Gothkar P, Sodhi PS (1999) On-farm seed priming in semi arid agriculture: development and evaluation in maize, rice and chick pea in India using participatory methods. Exp Agric 35:15–29

    Article  Google Scholar 

  • Hasanuzzaman M, Anwar Hossain M, Fujita M (2010) Selenium in higher plants: physiological role, antioxidant metabolism and abiotic stress tolerance. J Plant Sci 5:354–375

    Article  CAS  Google Scholar 

  • Heydecker W, Higgins J, Gulliver RL (1973) Accelerated germination by osmotic seed treatment. Nature 246:42–44

    Article  CAS  Google Scholar 

  • Hsu CC, Chen CL, Chen JJ, Sung JM (2003) Accelerated aging-enhanced lipid peroxidation in bitter gourd seeds and effects of priming and hot water soaking treatments. Sci Hortic 98:201–212

    Article  CAS  Google Scholar 

  • Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47:377–403

    Article  PubMed  CAS  Google Scholar 

  • Iqbal M, Ashraf M (2005) Changes in growth, photosynthetic capacity and ionic relations in spring wheat (Triticum aestivum L.) due to presowing seed treatment with polyamines. Plant Growth Regul 46:19–30

    Article  CAS  Google Scholar 

  • Jain N, Kulkarni MG, Van Staden J (2006) A butenolide isolated from smoke can overcome the detrimental effect of extreme temperatures during tomato seed germination. Plant Growth Regul 49:263–267

    Article  CAS  Google Scholar 

  • Jakab G, Ton J, Flors V, Zimmerli L, Métraux JP, Mauch-Mani B (2005) Enhancing Arabidopsis salt and drought stress tolerance by chemical priming for its abscisic acid responses. Plant Physiol 139:267–274

    Article  PubMed  CAS  Google Scholar 

  • Jaleel CA, Manivannan P, Gopi R, Panneerselvam R (2007) Responses of antioxidant defense system of Catharanthus roseus (L.) G. Don. to paclobutrazol treatment under salinity. Acta Physiol Plant 29:205–209

    Article  CAS  Google Scholar 

  • Jaleel CA, Lakshmanan GMA, Gomathinayagam M, Panneerselvam R (2008) Triadimefon induced salt stress tolerance in Withania somnifera and its relationship to antioxidant defense system. S Afr J Bot 74:126–132

    Article  CAS  Google Scholar 

  • Janmohammadi M, Moradi Dezfuli P, Sharifzadeh F (2008) Seed invigoration techniques to improve germination and early growth of inbred line of maize under salinity and drought stress. Gen Appl Plant Physiol 34:215–226

    Google Scholar 

  • Jett LW, Welbaum GE, Morse RD (1996) Effect of matric and osmotic priming treatments on broccoli seed germination. J Am Soc Hortic Sci 121:423–429

    Google Scholar 

  • Jeun YC, Park KS, Kim CH, Flower WD, Kloepper JW (2004) Cytological observations of cucumber plants during induced resistance elicited by rhizobacteria. Biol Control 29:34–42

    Article  Google Scholar 

  • Job D, Capron I, Job C, Dacher F, Corbineau F, Come D (2000) Identification of germination- specific protein markers and their use in seed priming technology. In: Black M, Bradford KJ, Vazguez-Ramos J (eds) Seed biology: advances and applications. CAB International, Wallingford, pp 449–459

    Google Scholar 

  • Kaur S, Gupta AK, Kaur N (2002) Effect of osmo- and hydropriming of chickpea on seedling growth and carbohydrate metabolism under water deficit stress. Plant Growth Regul 37:17–22

    Article  CAS  Google Scholar 

  • Kaur S, Gupta AK, Kaur N (2005) Seed priming increases crop yield possibly by modulating enzymes of sucrose metabolism in chickpea. J Agron Crop Sci 19:81–87

    Article  Google Scholar 

  • Kaya MD, Okcu G, Atak M, Cikili Y, Kolsarici O (2006) Seed treatments to overcome salt and drought stress during germination in sunflower (Helianthus annuus L.). Eur J Agron 24:291–295

    Article  CAS  Google Scholar 

  • Khajeh-Hosseini M, Powell AA, Bingham IJ (2003) The interaction between salinity stress and seed vigour during germination of soyabean seeds. Seed Sci Technol 31:715–725

    Google Scholar 

  • Khalil SK, Mexal JG, Murray LW (2001) Germination of soybean seed primed in aerated solution of polyethylene glycol (8000). J Biol Sci 1:105–107

    Article  Google Scholar 

  • Khan MA, Gul B, Weber DJ (2002) Improving seed germination of Salicornia rubra (Chenopodiaceae) under saline conditions using germination-regulating chemicals. West N Am Nat 62:101–105

    Google Scholar 

  • Khan MB, Gurchani MA, Hussain M, Freed S, Mahmood K (2011) Wheat seed enhancement by vitamin and hormonal priming. Pak J Bot 43:1495–1499

    Google Scholar 

  • Kibinza S, Bazin J, Bailly C, Farrant JM, Corbineau F, El-Maarouf-Bouteau H (2011) Catalase is a key enzyme in seed recovery from ageing during priming. Plant Sci 181:309–315

    Article  PubMed  CAS  Google Scholar 

  • Korkmaz A, Pill WG (2003) The effect of different priming treatments and storage conditions on germination performance of lettuce seeds. Eur J Hortic Sci 68:260–265

    CAS  Google Scholar 

  • Kubik KK, Eastin JA, Eskridge KM (1988) Solid matrix priming of tomato and pepper. In: Proceedings of the international conference on stand establishment for horticultural crops. Lancaster, Pennsylvania, USA, pp 86–96

  • Kulkarni MG, Sparg SG, Light ME, Van Staden J (2006) Stimulation of rice (Oryza sativa L.) seedling vigour by smoke-water and butenolide. J Agron Crop Sci 192:395–398

    Article  CAS  Google Scholar 

  • Lee SS, Kim JH, Hong SB, Yuu SH, Park EH (1998) Priming effect of rice seeds on seedling establishment under adverse soil conditions. K J Crop Sci 43:194–198

    Google Scholar 

  • Lee-suskoon KM, Hyeum J, Beom HS, Minkyeong K, Euiho P (1998) Optimum water potential, temperature and duration for priming of rice seeds. J Crop Sci 43:1–5

    Google Scholar 

  • Li J, Yin LY, Jongsma MA, Wang CY (2011) Effects of light, hydropriming and abiotic stress on seed germination, and shoot and root growth of pyrethrum (Tanacetum cinerariifolium). Ind Crop Prod 34:1543–1549

    Article  Google Scholar 

  • Lin JM, Sung JM (2001) Pre-sowing treatments for improving emergence of bitter gourd seedlings under optimal and sub-optimal temperatures. Seed Sci Technol 29:39–50

    Google Scholar 

  • Lorenzo MCB (1991) Seed invigoration of soybean and corn through solid matrix priming. BS, Philippines

  • Manish K, Geetika S, Renu B, Sandeep K, Gaganodeep J (2010) Effect of exogenous H2O2 on antioxidant enzymes of Brassica juncea L. seedlings in relation to 24-epibrassinolide under chilling stress. Indian J Biochem Biophys 47:378–382

    Google Scholar 

  • Manjunatha G, Raj SN, Shetty NP, Shetty HS (2008) Nitric oxide donor seed priming enhances defense responses and induces resistance against pearl millet downy mildew disease. Pestic Biochem Physiol 91:1–11

    Article  CAS  Google Scholar 

  • Margot P, Huggenberger F, Amrein J, Weiss B (1998) A new broadspectrum strobilurin fungicide. Brighton Crop Prot Conf Pest Disease 2:375–382

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic press, San Diego

    Google Scholar 

  • Maughan S, Foyer CH (2006) Engineering and genetic approaches to modulating the glutathione network in plants. Physiol Plant 126:382–397

    Article  CAS  Google Scholar 

  • McDonald MB (2000) Seed priming. In: Black M, Bewley JD (eds) Seed technology and its biological basis. Sheffield Academic Press, Sheffield, pp 287–325

    Google Scholar 

  • Mercado MFO, Fernandez PG (2002) Solid matrix priming of soybean seeds. Philipp J Crop Sci 27:27–35

    Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2009) Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant Cell Environ 33:453–467

    Article  PubMed  CAS  Google Scholar 

  • Mishra M, Kumar U, Mishra PK, Prakash V (2010) Efficiency of plant growth promoting rhizobacteria for the enhancement of Cicer arietinum L. growth and germination under salinity. Adv Biol Res 4:92–96

    CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 9:405–410

    Article  Google Scholar 

  • Moeinzadeh A, Sharif-Zadeh F, Ahmadzadeh M, Heidari Tajabadi F (2010) Biopriming of sunflower (Helianthus annuus L.) seeds with Pseudomonas fluorescens for improvement of seed invigoration and seedling growth. Aust J Crop Sci 4:564–570

    Google Scholar 

  • Mohanan C, Sharma JK (1991) Seed pathology of forest tree species in India- present status, practical problems and future prospects. Commonw For Rev 70:133–151

    Google Scholar 

  • Moradi A, Younesi O (2009) Effects of osmo- and hydropriming on seed parameters of grain sorghum (Sorghum bicolor L.). Aust J Basic Appl Sci 3:1696–1700

    CAS  Google Scholar 

  • Murungu FS, Nyamugafata P, Chiduza C, Clark LJ, Whalley WR (2003) Effects of seed priming, aggregate size and soil matric potential on emergence of cotton (Gossypium hirsutum L.) and maize (Zea mays L.). Soil Tillage Res 74:161–168

    Article  Google Scholar 

  • Nascimento WM, West SH (1998) Priming and seed orientation affect emergence and seed coat adherence and seedling development of muskmelon transplants. Hortic Sci 33:847–848

    Google Scholar 

  • Nawaz A, Amjad M, Pervez MA, Afzal I (2011) Effect of halopriming on germination and seedling vigor of tomato. Afr J Agric Res 6:3551–3559

    Google Scholar 

  • Niinemets U (2009) Mild versus severe stress and BVOCs: thresholds, priming and consequences. Trends Plant Sci 15:145–153

    Article  PubMed  CAS  Google Scholar 

  • Omidi H, Khazaei F, Hamzi Alvanagh S, Heidari-Sharifabad H (2009) Improvement of seed germination traits in canola (Brassica napus L.) as affected by saline and drought stresses. Plant Ecol Physiol 3:151–158

    Google Scholar 

  • Ozbingol N, Corbineau F, Come D (1998) Response of tomato seeds to osmoconditioning as related to temperature and oxygen. Seed Sci Res 8:377–384

    Article  Google Scholar 

  • Pandita VK, Anand A, Nagarajan S, Seth R, Sinha SN (2010) Solid matrix priming improves seed emergence and crop performance in okra. Seed Sci Technol 38:665–674

    Google Scholar 

  • Parera CA, Cantliffe DJ (1991) Improved germination and modified imbibitions of shrunken-2 sweet corn by seed disinfection and solid matrix priming. J Am Soc Hortic Sci 116:942–945

    Google Scholar 

  • Parera CA, Cantliffe DJ (1994) Presowing seed priming. Hortic Rev 16:109–114

    Google Scholar 

  • Parera CA, Qiao P, Cantliffe DJ (1993) Enhanced celery germination at stress temperature via solid matrix priming. Hortic Sci 28:20–22

    Google Scholar 

  • Passam HC, Kakouriotis D (1994) The effects of osmoconditioning on the germination, emergence and early plant growth of cucumber under saline conditions. Sci Hortic 57:233–240

    Article  Google Scholar 

  • Patade VY, Sujata B, Suprasanna P (2009) Halopriming imparts tolerance to salt and PEG induced drought stress in sugarcane. Agric Ecosyst Environ 134:24–28

    Article  CAS  Google Scholar 

  • Posmyk MM, Janas KM (2007) Effects of seed hydropriming in presence of exogenous proline on chilling injury limitation in Vigna radiata L. seedlings. Acta Physiol Plant 29:509–517

    Article  CAS  Google Scholar 

  • Pozo MJ, Azcon-Aguilar C (2007) Unraveling mycorrhiza-induced resistance. Curr Opin Plant Biol 10:393–398

    Article  PubMed  CAS  Google Scholar 

  • Radi AF, Shaddad MAK, El-Enany AE, Omran FM (2001) Interactive effects of plant hormones (GA3 or ABA) and salinity on growth and some metabolites of wheat seedlings. In: Horst WJ, Schenk MK, Burkert A, Claassen N, Flessa H, Frommer WB, Goldbach H, Olfs HW, Romheld V (eds) Plant nutrition, food security and sustainability of agro-ecosystems through basic and applied research. 14th international plant nutrition colloquium, Hannover, Germany, pp 436–437

  • Raetz CR, Ulevitch RJ, Wright SD, Sibley CH, Ding A, Nathan CF (1991) Gram-negative endotoxin: an extraordinary lipid with profound effects on eukaryotic signal transduction. Fed Am Soc Exp Biol J 5:2652–2660

    CAS  Google Scholar 

  • Randhir R, Shetty K (2005) Developmental stimulation of total phenolics and related antioxidant activity in light- and dark-germinated corn by natural elicitors. Proc Biochem 40:1721–1732

    Article  CAS  Google Scholar 

  • Rashid A, Harris D, Hollington P, Ali S (2004) On-farm seed priming reduces yield losses of mungbean (Vigna radiata) associated with mungbean yellow mosaic virus in the North West Frontier Province of Pakistan. Crop Prot 23:1119–1124

    Article  Google Scholar 

  • Rashid A, Hollington PA, Harris D, Khan P (2006) On-farm seed priming for barley on normal, saline and saline–sodic soils in North West Frontier Province, Pakistan. Eur J Agron 24:276–281

    Article  CAS  Google Scholar 

  • Rathinasabapathi B (2000) Metabolic engineering for stress tolerance: installing osmoprotectant synthesis pathways. Ann Bot 86:709–716

    Article  CAS  Google Scholar 

  • Rawat L, Singh Y, Shukla N, Kumar J (2011) Alleviation of the adverse effects of salinity stress in wheat (Triticum aestivum L.) by seed biopriming with salinity tolerant isolates of Trichoderma harzianum. Plant Soil 347:387–400

    Article  CAS  Google Scholar 

  • Reddy CS, Smith JD (1978) Effects of delayed post treatment of gamma-irradiated seed with cysteine on the growth of Sorghum bicolor seedlings. Environ Exp Bot 18:241–243

    Article  CAS  Google Scholar 

  • Reddy MVB, Arul J, Angers P, Couture L (1999) Chitosan treatment of wheat seeds induces resistance to Fusarium graminearum and improves seeds quality. J Agric Food Chem 47:67–72

    Article  Google Scholar 

  • Reyes LF, Cisneros-Zevallos L (2007) Electron-beam ionizing radiation stress affects on mango fruit (Mangifera indica L.) antioxidant constituents before and during post harvest storage. J Agric Food Chem 55:6132–6139

    Article  PubMed  CAS  Google Scholar 

  • Rithichai P, Sampantharat P, Jirakiattikul Y (2009) Coriander (Coriandrum sativum L.) seed quality as affected by accelerated aging and subsequent hydropriming. As J Food Ag-Ind Special Issue:S217–S221

  • Rock CD (2000) Pathways to abscisic acid regulated gene expression. New Phytol 148:357–384

    Article  CAS  Google Scholar 

  • Rouhi HR, Afshari RT, Moosavi SA, Gharineh MH (2010) Effects of osmopriming on germination and vigour traits of bersim clover (Trifolium alexandrinum L.). Not Sci Biol 2:59–63

    Google Scholar 

  • Rouhi HR, Aboutalebian MA, Sharif-Zadeh F (2011) Effects of hydro and osmopriming on drought stress tolerance during germination in four grass species. Int J Agric Sci 1:701–774

    Google Scholar 

  • Ruan SL, Xue QZ (2002) Effects of chitosan coating on seed germination and salt-tolerance of seedlings in hybrid rice (Oryza sativa L.). Acta Agron Sin 28:803–808

    Google Scholar 

  • Rubluo A (1982) The effect of l-cysteine on presoaked barley seeds treated with methyl methanesulfonate. Experientia 38:326–327

    Article  PubMed  CAS  Google Scholar 

  • Saha P, Chatterjee P, Biswas AK (2010) NaCl pretreatment alleviates salt stress by enhancement of antioxidant defense system and osmolyte accumulation in mungbean (Vigna radiata L. Wilczek). Indian J Exp Biol 48:593–600

    PubMed  CAS  Google Scholar 

  • Sahu MP, Singh D (1995) Role of thiourea in improving productivity of wheat (Triticum aestivum L.). J Plant Growth Regul 14:169–173

    Article  CAS  Google Scholar 

  • Sahu MP, Kumawat SM, D’Souza SF, Ramaswamy NK, Singh G (2005) Sulphydryl bioregulator technology for increasing mustard production. Res Bull RAUBARC, pp 1–52

  • Sakamoto M, Murata N (2002) The role of glycinebetaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environ 25:163–171

    Article  PubMed  CAS  Google Scholar 

  • Sakhabutdinova AR, Fatkhutdinova DR, Beazrukova MV, Shakirova FM (2003) Salicylic acid prevents the damaging action of stress factor of wheat plants. Bulg J Plant Physiol Special Issue:314–319

  • Salama KHA, Mansour MMF, Hassan NS (2011) Choline priming improves salt tolerance in wheat (Triticum aestivum L.). Aust J Basic Appl Sci 5:126–132

    CAS  Google Scholar 

  • Sarwar N, Yousaf S, Jamil FF (2006) Induction of salt tolerance in chickpea by using simple and safe chemicals. Pak J Bot 38:325–329

    Google Scholar 

  • Sedghi M, Nemati A, Amanpour-Balaneji B, Gholipouri A (2010) Influence of different priming materials on germination and seedling establishment of milk thistle (Silybum marianum) under salinity stress. World Appl Sci J 11:604–609

    CAS  Google Scholar 

  • Shafi M, Bakht J, Hassan MJ, Raziuddin M, Zhang G (2009) Effect of cadmium and salinity stresses on growth and antioxidant enzyme activities of wheat (Triticum aestivum L.). Bull Environ Contam Toxicol 82:772–776

    Article  PubMed  CAS  Google Scholar 

  • Shahrokhi M, Tehranifar A, Hadizadeh H, Selahvarzi Y (2011) Effect of drought stress and paclobutrazol-treated seeds on physiological response of Festuca arundinacea L. Master and Lolium perenne L. Barrage. J Biol Environ Sci 5:77–85

    Google Scholar 

  • Shakirova FM, Sakhabutdinova AR, Bezrokuva MV, Fatkhutdinova RA, Fatkhutdinova DR (2003) Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Sci 164:317–322

    Article  CAS  Google Scholar 

  • Shao CX, Hu J, Song WJ, Hu WM (2005) Effects of seed priming with chitosan solutions of different acidity on seed germination and physiological characteristics of maize seedling. J Zhejiang Univ (Agric & Life Sci) 31:705–708

    CAS  Google Scholar 

  • Sharmila P, Puthur JT, Pardha Saradhi P (2000) Vesicular arbuscular mycorrhizal fungi improves establishment of micropropagated plants. In: Mukerji KG, Chamola BP, Singh J (eds) Mycorrhizal Biology. Kluwer Academic/Plenum, New York, pp 236–250

    Google Scholar 

  • Singh BG, Rao G (1993) Effects of chemical soaking of sunflower (Helianthus annuus L.) seed on vigour index. Indian J Agric Sci 63:232–233

    CAS  Google Scholar 

  • Sivritepe N, Sivritepe HO, Eris A (2003) The effects of NaCl priming on salt tolerance in melon seedlings grown under saline conditions. Sci Hortic 97:229–237

    Article  CAS  Google Scholar 

  • Sivritepe HO, Sivritepe N, Eris A, Turhan E (2005) The effects of NaCl pre-treatments on salt tolerance of melons grown under long-term salinity. Sci Hortic 106:568–581

    Article  CAS  Google Scholar 

  • Srivastava AK, Ramaswamy NK, Mukopadhyaya R, Chiramal Jincy MG, D’Souza SF (2009) Thiourea modulates the expression and activity profile of mtATPase under salinity stress in seeds of Brassica juncea L. Ann Bot (Lond) 103:403–410

    Article  CAS  Google Scholar 

  • Srivastava AK, Lokhande VH, Patade VY, Suprasanna P, Sjahril R, D’Souza SF (2010a) Comparative evaluation of hydro-, chemo-, and hormonal priming methods for imparting salt and PEG stress tolerance in Indian mustard (Brassica juncea L.). Acta Physiol Plant 32:1135–1144

    Article  Google Scholar 

  • Srivastava AK, Suprasanna P, Srivastava S, D’Souza SF (2010b) Thiourea mediated regulation in the expression profile of aquaporins and its impact on water homeostasis under salinity stress in Brassica juncea roots. Plant Sci 178:517–522

    Article  CAS  Google Scholar 

  • Su J, Hirji R, Zhang L, He C, Selvaraj G, Wu R (2006) Evaluation of the stress-inducible production of choline oxidase in transgenic rice as a strategy for producing the stress-protectant glycine betaine. J Exp Bot 57:1129–1135

    Article  PubMed  CAS  Google Scholar 

  • Sudisha J, Niranjana SR, Sukanya SL, Girijamba R, Lakshmi Devi N, Shekar Shetty H (2010) Relative efficacy of strobilurin formulations in the control of downy mildew of sunflower. J Pest Sci 83:461–470

    Article  Google Scholar 

  • Sung JM, Chiu KY (1995) Hydration effects on seedling emergence strength of watermelon seed differing in ploidy. Plant Sci 110:21–26

    Article  CAS  Google Scholar 

  • Tavili A, Zare S, Enayati A (2009) Hydropriming, ascorbic and salicylic acid influence on germination of Agropyron elongatum Host. seeds under salt stress. Res J Seed Sci 2:16–22

    Article  Google Scholar 

  • Tavili A, Zare S, Moosavi SA, Enayati A (2011) Effects of seed priming on germination characteristics of Bromus species under salt and drought conditions. American-Eurasian J Agric Environ Sci 10:163–168

    Google Scholar 

  • Taylor AG, Harman GE (1990) Concepts and technologies of selected seed treatments. Ann Rev Phytopathol 28:321–329

    Article  Google Scholar 

  • Thomas UC, Varughese K, Thomas A, Sadanandan S (2000) Seed priming—for increased vigour, viability and productivity of upland rice. Leisa India 4:14

    Google Scholar 

  • Tiryaki I, Korkmaz A, Nas MN, Ozbay N (2005) Priming combined with plant growth regulators promotes germination and emergence of dormant Amaranthus cruentus L. seeds. Seed Sci Technol 33:571–579

    Google Scholar 

  • Tonelli ML, Furlan A, Taurian T, Castro S, Fabra A (2011) Peanut priming induced by biocontrol agents. Physiol Mol Plant 75:100–105

    Article  Google Scholar 

  • Uchida A, Jagendorf AT, Hibino T, Takabe T (2002) Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Sci 163:515–523

    Article  CAS  Google Scholar 

  • Van Hulten M, Pelser M, van Loon LC, Pieterse CMJ, Ton J (2006) Costs and benefits of priming for defense in Arabidopsis. Proc Natl Acad Sci USA 103:5602–5607

    Article  PubMed  CAS  Google Scholar 

  • Vickers CE, Gershenzon J, Lerdau MT, Loreto F (2009) A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nat Chem Biol 5:283–291

    Article  PubMed  CAS  Google Scholar 

  • Wahid A, Perveen M, Gelani S, Shahzad MA, Basra SMA (2007) Pretreatment of seed with H2O2 improves salt tolerance of wheat seedlings by alleviation of oxidative damage and expression of stress proteins. J Plant Physiol 164:283–294

    Article  PubMed  CAS  Google Scholar 

  • Windauer L, Altuna A, Benech-Arnold R (2007) Hydrotime analysis of Lesquerella fendleri seed germination responses to priming treatments. Ind Crop Prod 25:70–74

    Article  Google Scholar 

  • Xiong L, Zhu JK (2002) Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ 25:131–139

    Article  PubMed  CAS  Google Scholar 

  • Xu S, Hu J, Li Y, Ma W, Zheng Y, Zhu S (2011) Chilling tolerance in Nicotiana tabacum induced by seed priming with putrescine. Plant Growth Regul 63:279–290

    Article  CAS  Google Scholar 

  • Yadav PV, Kumari M, Ahmed Z (2011) Seed priming mediated germination improvement and tolerance to subsequent exposure to cold and salt stress in capsicum. Res J Seed Sci 4:125–136

    Article  Google Scholar 

  • Yagmur M, Kaydan D (2008) Alleviation of osmotic strength of water and salt in germination and seedling growth of triticale with seed priming treatments. Afr J Biotechnol 7:2156–2162

    CAS  Google Scholar 

  • Yari L, Sheidaie S (2011) Effect of seed priming on seed germination’s behavior of rice (Oryza sativa L.). Int J Agric Sci 1:45–51

    CAS  Google Scholar 

  • Yeh YM, Chiu KY, Chen CL, Sung JM (2005) Partial vacuum extends the longevity of primed bitter gourd seeds by enhancing their anti-oxidative activities during storage. Sci Hortic 104:101–112

    Article  CAS  Google Scholar 

  • Yuan-Yuan S, Yong-Jian S, Ming-Tian W, Xu-Yi LI, Xiang GUO, Rong HU, Jun MA (2010) Effects of seed priming on germination and seedling growth under water stress in rice. Acta Agron Sin 36:1931–1940

    Article  Google Scholar 

  • Zhao TJ, Liu Y, Yan YB, Feng F, Liu WQ, Zhou HM (2007) Identification of the aminoacids crucial for the activities of drought responsive element binding factors (DREBs) of Brassica napus. FEBS Lett 581:3044–3050

    Article  PubMed  CAS  Google Scholar 

  • Zhou YG, Yang YD, Qi YG, Zhang ZM, Wang XJ, Hu XJ (2002) Effects of chitosan on some physiological activity in germinating seed of peanut. J Peanut Sci 31:22–25

    Google Scholar 

  • Zhou ZS, Guo K, Elbaz AA, Yang ZM (2009) Salicylic acid alleviate mercury toxicity by preventing oxidative stress in roots of Medicago sativa. Environ Exp Bot 65:27–34

    Article  CAS  Google Scholar 

  • Zhu JK, Liu J, Xiong L (1998) Genetic analysis of salt tolerance in Arabidopsis: evidence for a critical role of potassium nutrition. Plant Cell 10:1181–1191

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

J.T.P. would like to acknowledge the funding received from University Grants Commission (India) (39-367/2010(SR) and KSCSTE, Govt. of Kerala (India) (011/SRSLS/2010/CSTE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jos T. Puthur.

Additional information

Communicated by A. K. Kononowicz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jisha, K.C., Vijayakumari, K. & Puthur, J.T. Seed priming for abiotic stress tolerance: an overview. Acta Physiol Plant 35, 1381–1396 (2013). https://doi.org/10.1007/s11738-012-1186-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-012-1186-5

Keywords

Navigation