Skip to main content
Log in

Free radical scavenging and antioxidant potential of mangrove plants: a review

  • Review
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Free radicals derived from reactive oxygen species and reactive nitrogen species are generated in our body by normal cellular metabolism which is enhanced under stress conditions. The most vulnerable biological targets of free radicals are cell structures including proteins, lipids and nucleic acids. Since antioxidants synthesized in the body are not sufficient under oxidative stress, their exogenous supply is important to prevent the body from free radical-induced injury. Recent researches have shown that antioxidants of plant origin with free radical scavenging property could have great importance as therapeutic agents in management of oxidative stress. Mangrove plants growing in inhospitable environment of the intertidal regions of land and sea in tropics and sub-tropics are equipped with very efficient free radical scavenging system to withstand the variety of stress conditions. These mangrove plants possess variety of phytochemical and are rich in phenolic compounds such as flavonoids, isoflavones, flavones, anthocyanins, coumarins, lignans, catechins, isocatechins, etc., which served as source of antioxidants. Isolation and identification of these antioxidant compounds offer great potential for their pharmaceutical exploitations. However, no comprehensive literature is available on antioxidants’ studies in mangrove plants in particular. Hence, the present review discusses the antioxidant potential of mangrove plants with its specific role under salt stress as well as the progress made so far in evaluation of antioxidant activities of different mangrove species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agoramoorthy G, Chen F, Venkatesalu V, Kuo D, Shea P (2008) Evaluation of antioxidant polyphenols from selected mangrove plants of India. Asian J Chem 20:1311–1322

    CAS  Google Scholar 

  • Ali SS, Kasoju N, Luthra A, Singh A, Sharanabasava H, Sahu A, Bora U (2008) Indian medicinal herbs as sources of antioxidants. Food Res Int 41:1–15

    Google Scholar 

  • Alia PSP, Pardhasaradhi P, Mohanty P (1991) Proline enhances primary photochemical activities in isolated thylakoid membranes of Brassica juncea by arresting photoinhibitory damage. Biochem Biophys Res Commun 181:1238–1244

    CAS  PubMed  Google Scholar 

  • Amado LL, Jaramillo MD, Rocha AM, Ferreira JLR, Garcia LM, Ramos PB (2007) A new method to evaluate total antioxidant capacity against reactive oxygen and nitrogen species (RONS) in aquatic organisms. Comp Biochem Physiol Part A Mol Integr Physiol 148:S75–S76

    Google Scholar 

  • Anjaneyulu ASR, Rao VL (2000) Five diterpenoids (agallochins A–E) from the mangrove plant Excoecaria agallocha Linn. Phytochemistry 55:891–901

    CAS  PubMed  Google Scholar 

  • Apak R, Guculu KG, Ozyurek M, Karademir SE (2004) Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric iron reducing capability in the presence of neocuproine: CUPRAC method. J Agric Food Chem 52:7970–7981

    CAS  PubMed  Google Scholar 

  • Arora A, Sairam RK, Srivastava GC (2002) Oxidative stress and antioxidant system in plants. Cur Sci 82:1227–1238

    CAS  Google Scholar 

  • Arumugam M, Pawar UR, Gomathinayagam M, Lakshmanan GMA, Panneerselvam R (2012) Antibacterial and antioxidant activity between micropropagated and field grown plants of Excoecaria agallocha L. Int Res J Pharm 3:235–240

    CAS  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    CAS  PubMed Central  PubMed  Google Scholar 

  • Asada K, Kiso K, Yoshikawa K (1974) Univalent reduction of molecular oxygen by spinach chloroplasts on illumination. J Biol Chem 249:2175–2181

    CAS  PubMed  Google Scholar 

  • Asha KK, Mathew S, Lakshmanan PT (2012) Flavonoids and phenolic compounds in two mangrove species and their antioxidant property. Int J Geo-Mar Sci 41:259–264

    CAS  Google Scholar 

  • Athukorala Y, Kim KN, Jeon YJ (2006) Antiproliferative and antioxidant properties of an enzymatic hydrolysate from brown alga, Ecklonia cava. Food Chem Toxicol 44:1065–1074

    CAS  PubMed  Google Scholar 

  • Bandaranayake WM (1998) Traditional and medicinal uses of mangroves. Mangroves Salt Marshes 2:133–148

    Google Scholar 

  • Bandaranayake WM (2002) Bioactivities, bioactive compounds and chemical constituents of mangrove plants. Wetl Ecol Manag 10:421–452

    CAS  Google Scholar 

  • Banerjee D, Chakrabarti S, Hazra AK, Banerjee S, Ray J, Mukerjee B (2008) Antioxidant activity and total phenolics of some mangroves in Sundarbans. Afr J Biotechnol 7:805–810

    Google Scholar 

  • Ben Amor N, Ben Hamed K, Debez A, Grignon C, Abdelly C (2005) Physiological and antioxidant responses of the perennial halophyte Crithmum maritimum to salinity. Plant Sci 68:889–899

    Google Scholar 

  • Berenguer B, Sánchez LM, Quílez A, López-Barreiro M, De Haro O, Gálvez J, Martín MJ (2006) Protective and antioxidant effects of Rhizofora mangla L against NSAID-induced gastric ulcers. J Ethnopharmacol 103:194–200

    CAS  PubMed  Google Scholar 

  • Beula JM, Gnanadesigan Rajkumar MPB, Ravikumar S, Anand M (2012) Antiviral, antioxidant and toxicological evaluation of mangrove plant from South East coast of India. Asian Pac J Trop Biomed 2:S352–S357

    Google Scholar 

  • Bhattacharjee S (2005) Reactive oxygen species and oxidative burst: roles in stress, senescence and signal transduction in plant. Cur Sci 89:1113–1121

    CAS  Google Scholar 

  • Bunyapraphatsara N, Jutiviboonsuk A, Sornlek P, Therathanathorn W, Aksornkaew S, Fong HHS, Pezzuto JM, Kosmeder J (2003) Pharmacological studies of plants in the mangrove forest. J Phytopharm 10:1–12

    Google Scholar 

  • Chanda S, Dave R (2009) In vitro models for antioxidant activity evaluation and some medicinal plants possessing antioxidant properties: an overview. Afr J Microbiol Res 3:981–996

    Google Scholar 

  • Cheeseman JM, Herendeen LB, Cheeseman AT, Clough BF (1997) Photosynthesis and photoprotection in mangroves under field conditions. Plant Cell Environ 20:579–588

    CAS  Google Scholar 

  • Chen PS, Li JH, Liu TY, Lin TC (2000) Folk medicine Terminalia catappa and its major Terminalia catappa and its major tannin component Punicalagin are effective against bleomycin-induced genotoxicity in Chinese hamster ovary cells. Can Lett (Ireland) 152:371–376

    Google Scholar 

  • Cherian S, Reddy MP (2003) Evaluation of NaCl tolerance in the callus cultures of Suaeda nudiflora Moq. Biol Plant 46:193–198

    CAS  Google Scholar 

  • Cherian S, Reddy MP, Pandya JB (1999) Studies on salt tolerance in Avicennia marina (Forstk.) Vierh.: effect of NaCl salinity on growth, ion accumulation and enzyme activity. Indian J Plant Physiol 4:266–270

    CAS  Google Scholar 

  • Chong PL, Olsher M (2007) Fluorometric assay for detection of sterol oxidation in liposomal membranes. Methods Mol Biol 400:145–158

    CAS  PubMed  Google Scholar 

  • Cízová H, Lojek A, Kubala L, Cíz M (2004) The effect of intestinal ischemia duration on changes in plasma antioxidant defense status in rats. Physiol Res 53:523–531

    PubMed  Google Scholar 

  • Cuendet M, Hostettmann K, Potterat O (1997) Iridoid glucosides with free radical scavenging properties from Fagraea blumei. Helv Chim Acta 80:1144–1151

    CAS  Google Scholar 

  • Das M, Mukherjee SB, Shaha C (2001) Hydrogen peroxide induces apoptosis like death in Leishmania donovani promastigotes. J Cell Sci 114:2461–2469

    CAS  PubMed  Google Scholar 

  • Dasgupta N, Nandy P, Tiwari C, Das S (2010) Salinity-imposed changes of some isozymes and total leaf protein expression in five mangroves from two different habitats. J Plant Inter 3:211–221

    Google Scholar 

  • Dasgupta N, Nandy P, Sengupta C, Das S (2012) Protein and enzymes regulations towards salt tolerance of some Indian mangroves in relation to adaptation. Trees 26:377–391

    CAS  Google Scholar 

  • Datta SC, Murti VVS, Sharma NN, Seshadri TR (1973) Glycosidic components of Thespesia populnea flowers. Indian J Chem 11:506–507

    CAS  Google Scholar 

  • Denev P, Ciz M, Ambrozova G, Lojek A, Yanakieva I (2010) Solidphase extraction of berries’ anthocyanins and evaluation of their antioxidative properties. Food Chem 123:1055–1061

    CAS  Google Scholar 

  • Dong LL, Xiao-Ming L, Ze-Yu P, Bin-Gui W (2007) Flavanol derivatives from Rhizophora stylosa and their DPPH radical scavenging activity. Molecules 12:1163–1169

    Google Scholar 

  • Erickson KL, Beutler JA, Cardellina JH, McMohan JB, Newman DJ, Boyd MR (1995) A novel phorbol ester from Excoecaria agallocha. J Nat Prod 58:769–772

    CAS  PubMed  Google Scholar 

  • Fang ZQ, Yuan LY, Hong PC, Ming LC, Shan WB (2005) NaCl enhances thylakoid-bound SOD activity in the leaves of C3 halophyte Suaeda salsa L. Plant Sci 168:423–430

    Google Scholar 

  • Firdaus M, Prihanto AA, Nurdiani R (2013) Antioxidant and cytotoxic activity of Acanthus ilicifolius flower. Asian Pac J Trop Biomed 3(1):17–21

  • Gaxiola RA, Rao R, Sherman A, Grisafi P, Alper SL, Fink GR (1999) The Arabidopsis thaliana proton transporters, AtNhx1 and Avp1, can function in cation detoxification in yeast. Proc Nat Acad Sci 96:1480–1485

    CAS  PubMed  Google Scholar 

  • Genard H, Le Saos J, Hillard J, Tremolieres A, Boucaud J (1991) Effect of salinity on lipid composition, glycine betaine content and photosynthetic activity in chloroplasts of Suaeda maritime. Plant Physiol Biochem 29:421–427

    CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    CAS  PubMed  Google Scholar 

  • Gill SS, Khan NA, Anjum NA, Tuteja N (2011) Amelioration of cadmium stress in crop plants by nutrients management: morphological, physiological and biochemical aspects. Plant Stress 5:1–23

    Google Scholar 

  • Halliwell B (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 141:312–322

    CAS  PubMed Central  PubMed  Google Scholar 

  • Haq M, Sani W, Hossain ABMS, Taha RM, Monneruzzaman KM (2011) Total phenolic contents, antioxidant and antimicrobial activities of Bruguiera gymnorrhiza. J Med Plants Res 17:4112–4118

    Google Scholar 

  • Harrison PD, Arosio P (1996) Ferritins: molecular properties, iron storage function and cellular regulation. Biochem Biophys Acta 1275:161–203

    PubMed  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    CAS  PubMed  Google Scholar 

  • Hollander-Czytko H, Grabowski J, Sandorf I, Weckermann K, Weiler EW (2005) Tocopherol content and activities of tyrosine aminotransferase and cystine lyase in Arabidopsis under stress conditions. J Plant Physiol 162:767–770

    PubMed  Google Scholar 

  • Hossain SJ, Basar MH, Rokeya B, Arif KMT, Sultana MS, Rahman MH (2013) Evaluation of antioxidant, antidiabetic and antibacterial activities of the fruit of Sonneratia apetala (Buch.-Ham.). Orient Pharm Exp Med 13:95–102

    Google Scholar 

  • Huang GY, Wang YS, Sun CC, Dong JD, Sun ZX (2010) The effect of multiple heavy metals on ascorbate, glutathione and related enzymes in two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza). Oceanol Hydrobiol Stud 39:11–25

    CAS  Google Scholar 

  • Imlay JA (2003) Pathways of oxidative damage. Ann Rev Microbiol 57:395–408

    CAS  Google Scholar 

  • Jithesh MN, Prashanth SR, Sivaprakash KR, Parida AK (2006a) Antioxidative response mechanisms in halophytes: their role in stress defence. J Genet 85:237–254

    CAS  PubMed  Google Scholar 

  • Jithesh MN, Prashanth SR, Sivaprakash KR, Parida AK (2006b) Monitoring expression profiles of antioxidant genes to salinity, iron, oxidative, light and hyperosmotic stresses in the highly salt tolerant grey mangrove, Avicennia marina (Forsk.) Vierh by mRNA analysis. Plant Cell Rep 25:865–876

    CAS  PubMed  Google Scholar 

  • Jun W, Qiang X, Jing X, Min YL, Jian YP, Mei-hua Y (2008) Natural products from true mangrove flora: source, chemistry and bioactivities. Nat Prod Rep 25:955–981

    Google Scholar 

  • Kanchanapoom T, Kasai R, Picheansoonthon C, Yamasaki K (2001) Megastigmane, aliphatic alcohol and benzoxazinoid glycosides from Acanthus ebracteatus. Phytochemistry 58:811–817

    CAS  PubMed  Google Scholar 

  • Kathiresan K, Bingham BL (2001) Biology of mangroves and mangrove ecosystems. Adv Mar Biol 40:81–251

    Google Scholar 

  • Khafagi I, Gab-Alla A, Salama W, Fouda M (2003) Biological activities and phytochemical constituents of the gray mangrove Avicennia marina (Forssk.) Vierh. Egyptian J Biol 5:62–69

    Google Scholar 

  • Konishi T, Takasaki M, Tokuda H, Kiyosawa S, Konoshima T (1998) Anti-tumor promoting activity of diterpenes from Excoecaria agallocha. Bio Pharm Bull 21:993–996

    CAS  Google Scholar 

  • Konishi T, Konoshima T, Fujiwara Y, Kiyosawa S (2000) Excoecarins D, E, and K, from Excoecaria agallocha. J Nat Prod 63:344–346

    CAS  PubMed  Google Scholar 

  • Krishnaiah D, Sarbatly R, Bono A (2007) Phytochemical antioxidants for health and medicine: a move towards nature. Biotechnol Mol Biol Rev 1:097–104

    Google Scholar 

  • Krishnamoorthy M, Sasikumat JM, Shamna R, Pandirajan C, Sofia P, Nagarajan B (2011) Antioxidant activities of bark extract from mangroves, Bruguiera cylindrica (L.) Blume and Ceriops decandra Perr. Indian J Pharmacol 43:369–370

    Google Scholar 

  • Ksouri R, Falleh H, Megdiche W, Trabelsi N, Mhamdi B, Chaieb K, Bakrouf A, Magne C, Abdelly C (2009) Antioxidant and antimicrobial activities of the edible medicinal halophyte Tamarix gallica L. and related polyphenolic constituents. Food Chem Toxicol 47:2083–2091

    CAS  PubMed  Google Scholar 

  • Li MY, Xiao Q, Pan JY, Wu J (2009) Review natural products from semi-mangrove flora: source, chemistry and bioactivities. Nat Prod Rep 26:281–298

    PubMed  Google Scholar 

  • Li YX, Yu X, Yu SJ, Ma AY, Deng ZW, Lin WH (2010) phenolic glucopyranosides from the Chinese mangrove plant Excoecaria agallocha. J Chin Pharm Sci 19:256–259

    CAS  Google Scholar 

  • Liebezeit G, Rau MT (2006) New Guinean mangroves—traditional usage and chemistry of natural products. Sencken Mari 36:1–10

    Google Scholar 

  • Lobreaux S, Thoiron S, Briat JF (1995) Induction of ferritin synthesis in maize leaves by an iron-mediated oxidative stress. Plant J 8:443–449

    CAS  Google Scholar 

  • Loo AY, Jain K, Darah I (2008) Antioxidant activity of compounds isolated from the pyroligneous acid, Rhizophora apiculata. Food Chem 107:1151–1160

    CAS  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    CAS  PubMed  Google Scholar 

  • Mallik S, Nayak M, Sahu BB, Panigrahi AK, Shaw BP (2011) Response of antioxidant enzymes to high NaCl concentration in different salt-tolerant plants. Biol Plant 55:191–195

    CAS  Google Scholar 

  • Masuda T, Yonemori S, Oyama Y, Takeda Y, Tanaka T, Ando T, Shinohara A, Nakata M (1999) Evaluation of the antioxidant activity of environmental plants: activity of the leaf extracts from seashore plants. J Agri Food Chem 47:1749–1754

    CAS  Google Scholar 

  • McDonald S, Prenzler PD, Antolovich M, Robards K (2001) Phenolic content and antioxidant activity of olive extracts. Food Chem 73:73–84

    CAS  Google Scholar 

  • Milon MA (2012) Antioxidant, cytotoxic and antimicrobial activity of Sonneratia alba bark. Int J Pharm Sci Res 3:2233–2237

    Google Scholar 

  • Mishra S, Das AB (2003) Effect of NaCl on leaf salt secretion and antioxidative enzyme level in roots of a mangrove, Aegiceras corniculatum. Indian J Exp Biol 41:160–166

    PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    CAS  PubMed  Google Scholar 

  • Mullineaux PM, Rausch T (2005) Glutathione, photosynthesis and the redox regulation of stress-responsive gene expression. Photosynth Res 86:459–474

    CAS  PubMed  Google Scholar 

  • Noctor G, Foyer CH (1998) A re-evaluation of the ATP: NADPH budget during C3 photosynthesis. A contribution from nitrate assimilation and its associated respiratory activity. J Exp Bot 49:1895–1908

    CAS  Google Scholar 

  • Oktay M, Gulcin I, Kufrevioglu OI (2003) Determination of in vitro antioxidant activity of fennel (Foeniculum vulgare) seed extracts. Leb Wissen Technol 36:263–271

    CAS  Google Scholar 

  • Ospina LE, Calle J, Arteaga L, Pinzo NR, Alcaraz MJ, Ac Paya M (2001) Flavonol glycosides and novel iridoid glycoside from the leaves of Morinda citrifolia. Plant Med 67:791–795

    CAS  Google Scholar 

  • Pandhair V, Sekhon BS (2006) Reactive oxygen species and antioxidant in plants—an overview. J Plant Biochem Biotechnol 15:71–78

    CAS  Google Scholar 

  • Paramonova NV, Shevyakova NI, Kuznetsov VV (2004) Ultrastructure of chloroplasts and their storage inclusions in the primary leaves of Mesembryanthemum crystallinum affected by putrescine and NaCl. Russ J Plant Physiol 1:86–96

    Google Scholar 

  • Parida AK, Jha B (2010) Salt tolerance mechanisms in mangroves: a review. Trees 24:199–217

    Google Scholar 

  • Parida AK, Das AB, Mohanty P (2004) Investigations on the antioxidative defence responses to NaCl stress in a mangrove, Bruguiera parviflora: differential regulations of isoforms of some antioxidative enzymes. Plant Growth Regul 42:213–226

    CAS  Google Scholar 

  • Patra JK, Thatoi HN (2011) Metabolic diversity and bioactivity screening of mangrove plants: a review. Acta Physiol Plant 33:1051–1061

    CAS  Google Scholar 

  • Patra JK, Rath SK, Jena K, Rathod VK, Thatoi HN (2008) Evaluation of antioxidant and antimicrobial activity of seaweed (Sargassum sp.) extract: a study on inhibition of Glutathione-S-transferase activity. Turk J Biol 32:119–125

    Google Scholar 

  • Patra JK, DasMohapatra A, Rath SK, Dhal NK, Thatoi HN (2009a) Screening of antioxidant and antimicrobial activity of leaf extracts of Excoecaria agallocha L. Int J Integr Biol 7:9–15

    CAS  Google Scholar 

  • Patra JK, Panigrahi TK, Rath SK, Dhal NK, Thatoi HN (2009b) Phytochemical screening and antimicrobial assessment of leaf extracts of Excoecaria agallocha L.: a mangal species of Bhitarkanika, Orissa, India. Adv Nat Appl Sci 3:241–246

    Google Scholar 

  • Patra JK, Dhal NK, Thatoi HN (2011) In vitro bioactivity and phytochemical screening of Suaeda maritima (Dumort): a mangrove associate from Bhitarkanika, India. Asian Pac J Trop Med 4:727–734

    CAS  PubMed  Google Scholar 

  • Pellegrini N, Serafini M, Colombi B, Del Rio D, Salvatore S (2003) Total antioxidant capacity of plant foods, beverages and oils consumed in Italy assessed by three different in vitro assays. J Nutr 133:2812–2819

    CAS  PubMed  Google Scholar 

  • Pisoschi AM, Negulescu GP (2011) Methods for total antioxidant activity determination: a review. Biochem Anal Biochem 1:1–10

    Google Scholar 

  • Popov IN, Lewin G (1996) Photochemiluminescent detection of antiradical activity; IV: testing of lipid-soluble antioxidants. J Biochem Biophy Methods 31:1–8

    CAS  Google Scholar 

  • Prabhu VV, Guruvayoorappan C (2012) Phytochemical screening of methanolic extract of mangrove Avicennia marina (Forssk.)Vierh. Der Pharmacia Sinica 3:64–70

    CAS  Google Scholar 

  • Prieto P, Pineda M, Aguilar M (1999) Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem 269:337–341

    CAS  PubMed  Google Scholar 

  • Rahim AA, Rocca E, Steinmetz J, Kassim MJ, Ibrahim MS, Osman H (2008) Antioxidant activities of mangrove Rhizophora apiculata bark extracts. Food Chem 107:200–207

    CAS  Google Scholar 

  • Ramchoun M, Harnafi H, Alem C, Benlys M, Elrhaffari L, Amrani S (2009) Study on antioxidant and hypolipidemic effects of polyphenol rich extract from Thymus vulgaris and Lavandula multifida. Pharmacogn Res 1:106–112

    Google Scholar 

  • Ravikumar S, Gnanadesigan M (2011a) Hepatoprotective and antioxidant activity of a mangrove plant Lumnitzera racemosa. Asian Pac J Trop Biomed 1(5):348–352

    Google Scholar 

  • Ravikumar S, Gnanadesigan M (2011b) Hepatoprotective and antioxidant properties of Rhizophora mucronata mangrove plant in CCl4 intoxicated rats. J Exp Clin Med 4:66–72

    Google Scholar 

  • Ravikumar S, Gnanadesigan M, Inbaneson SJ, Kalaiarasi A (2011) Hepatoprotective and antioxidant properties of Suaeda maritima (L.) Dumort ethanolic extract on concanvalin-A induced hepatotoxicity in rats. Indian J Exp Biol 49:455–460

    Google Scholar 

  • Ravindran C, Naveenan T, Varatharajan GR, Rajasabapathy R, Meena RM (2012) Antioxidants in mangrove plants and endophytic fungal associations. Bot Mar 55:269–279

    CAS  Google Scholar 

  • Rhodes D, Hanson AD (1993) Quaternary ammonium and tertiary sulfonium compounds in higher-plants. Ann Rev Plant Physiol Plant Mol Biol 44:357–384

    CAS  Google Scholar 

  • Roome T, Dar A, Ali S, Naqvi S, Choudhary MI (2008) A study on antioxidant, free radical scavenging, anti-inflammatory and hepatoprotective actions of Aegiceras corniculatum (stem) extracts. J Ethnopharmacol 118:514–521

    CAS  PubMed  Google Scholar 

  • Ru QM, Xiao Q, Lin P, Pei ZM, Zheng HL (2009) Short- and long-term effects of NaCl on physiological and biochemical characteristics in leaves of a true mangrove, Kandelia candel. Russ J Plant Physiol 56:3363–3369

    Google Scholar 

  • Salekdeh GH, Siopongco J, Wade LJ, Ghareyazie B, Bennett J (2002) A proteomic approach to analyzing drought- and salt-responsiveness in rice. Field Crop Res 76:199–219

    Google Scholar 

  • Scandalios JG (1993) Oxygen stress and superoxide dismutases. Plant Physiol 101:7–12

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schwarzländer M, Fricker MD, Marty CM, Brach L, Novak T, Sweetlove J, Meyer AJ (2008) Confocal imaging of glutathione redox potential in living plant cells. J Microbiol 231:299–316

    Google Scholar 

  • Selvakumar K, Madhan R, Srinivasan G, Baskar V (2011) Antioxidant assays in pharmacological research. Asian J Pharm Tech 1:99–103

    Google Scholar 

  • Serafini M, Del Rio D (2004) Understanding the association between dietary antioxidants, redox status and disease: is the total antioxidant capacity the right tool? Redox Rep 9:145–152

    CAS  PubMed  Google Scholar 

  • Shanmugapriya R, Ramanathan T, Renugadevi G (2012) Phytochemical characterization and antimicrobial efficiency of mangrove plants Avicennia marina and Avicennia officinalis. Int J Pharm Biol Arch 3:348–351

    Google Scholar 

  • Shi H, Ishitani M, Kim C, Zhu JK (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Nat Acad Sci 97:6896–6901

    CAS  PubMed  Google Scholar 

  • Shi C, Xu MJ, Bayer M, Deng ZW, Kubbutat MHG, Waejen W, Proksch P, Lin WH (2010) Phenolic compounds and their anti-oxidative properties and protein kinase inhibition from the Chinese mangrove plant Laguncularia racemosa. Phytochemistry 71:435–442

    CAS  PubMed  Google Scholar 

  • Singh A, Duggal S, Suttee A (2009) Acanthus ilicifolius linn.-lesser known medicinal plants with significant pharmacological activities. Int J Phytomed 1:1–3

    CAS  Google Scholar 

  • Slavíková H, Lojek A, Hamar J, Dušková M, Kubala L (1998) Total antioxidant capacity of serum increased in early but not in late period after intestinal ischemia in rats. Free Radic Biol Med 25:9–18

    PubMed  Google Scholar 

  • Soler-Rivas C, Espin JC, Wichers HJ (2000) An easy and fast test to compare total free radical scavenger capacity of foodstuffs. Phytochem Anal 11:330–338

    CAS  Google Scholar 

  • Subhan N, Alam MA, Ahmed F, Awal MA, Nahar L, Sarker SD (2008) In vitro antioxidant property of the extract of Excoecaria agallocha (Euphorbiaceae). DARU 16:149–154

    Google Scholar 

  • Suganthy N, Kesika P, Pandian SK, Devi KP (2009) Mangrove plants extract: radical scavenging activities and its battle against food borne pathogens. Forsch Komplementmed 16:41–48

    PubMed  Google Scholar 

  • Sun Y, Ding Y, Lin WH (2009) Isolation and identification of compounds from marine mangrove plant Avicennia marina. Beijing Da Xue Xue Bao 41:221–225

    CAS  PubMed  Google Scholar 

  • Takara K, Kuniyoshi A, Wada K, Kinjyo K, Iwasaki H (2008) Antioxidative flavan-3-ol glycosides from stems of Rhizophora stylosa. Biosci Biotechnol Biochem 72:2191–2194

    CAS  PubMed  Google Scholar 

  • Takemura T, Hanagata N, Sugihara K, Baba S, Karube I, Dubinsky Z (2000) Physiological and biochemical responses to salt stress in the mangrove, Bruguiera gymnorrhiza. Aquatic Bot 68:15–28

    CAS  Google Scholar 

  • Takemura T, Hanagata N, Dubinsky Z, Karube I (2002) Molecular characterization and response to salt stress of mRNAs encoding cytosolic Cu/Zn superoxide dismutase and catalase from Bruguiera gymnorrhiza. Trees Struct Funct 16:94–99

    CAS  Google Scholar 

  • Thaipong K, Boonprakob U, Crosby K, Cisneros-Zevallos L, Byrne DH (2006) Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J Food Comp Anal 19:669–675

    CAS  Google Scholar 

  • Theil EC (1987) Ferritin: structure, gene regulation, and cellular function in animals, plants and microorganisms. Annu Rev Biochem 56:289–315

    CAS  PubMed  Google Scholar 

  • Thirunavukkarasu P, Ramanathan T, Ramkumar L, Shanmugapriya R, Renugadevi G (2011a) The antioxidant and free radical scavenging effect of Avicennia officinalis. J Med Plants Res 5:4754–4758

    Google Scholar 

  • Thirunavukkarasu P, Ramanathan T, Shanmugapriya R, Umamaheswari G, Renugadevi G (2011b) Antioxidant and free radical scavenging effect of Acanthus ilicifolius. Res J Appl Sci 6:218–222

    CAS  Google Scholar 

  • Vadlapudi V, Naidu KC (2009) Evaluation of antioxidant potential of selected mangrove plants. J Pharm Res 2:1742–1745

    CAS  Google Scholar 

  • Wagner D, Przybyla D, Opden Camp R, Kim C, Landgraf F, Lee KP, Wursch M, Laloi C, Nater M, Hideg E, Apel K (2004) The genetic basis of singlet oxygen induced stress responses of Arabidopsis thaliana. Science 306:1183–1185

    CAS  PubMed  Google Scholar 

  • Wang B, Luttge U, Ratajczak R (2004) Specific regulation of SOD isoforms by NaCl and osmotic stress in leaves of the C3 halophyte Suaeda salsa L. J Plant Physiol 161:285–293

    CAS  PubMed  Google Scholar 

  • Wangensteen H, Dang HCT, Uddin SJ, Alamgir M, Malterud KE (2009) Antioxidant and antimicrobial effects of the mangrove tree Heritiera fomes. Nat Prod Commun 4:371–376

    CAS  PubMed  Google Scholar 

  • Wei SD, Chen RY, Liao MM, Tu N, Zhou HC, Lin YM (2011) Antioxidant condensed tannins from Machilus pauhoi leaves. J Med Plants Res 5:796–804

    CAS  Google Scholar 

  • Willekens H, Inze D, Van Montagu M, Van Camp W (1995) Catalase in plants. Mol Breed 1:207–208

    CAS  Google Scholar 

  • Xiang C, Werner BL, Christensen EM, Oliver DJ (2001) The biological functions of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels. Plant Physiol 126:564–574

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yen GC, Chen HY (1995) Antioxidant activity of various tea extracts in relation to their antimutagenicity. J Agri Food Chem 43:27–32

    CAS  Google Scholar 

  • Zhang LL, Lin YM, Zhou HC, Wei SD, Chen JH (2010) Condensed tannins from mangrove species Kandelia candel and Rhizophora mangle and their antioxidant activity. Molecules 15:420–431

    CAS  PubMed  Google Scholar 

  • Zhu F, Chen X, Yuan Y, Huang M, Sun H, Xiang W (2009) The chemical investigations of the mangrove plant Avicennia marina and its endophytes. Open Nat Prod J 2:24–32

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. N. Thatoi.

Additional information

Communicated by P. Wojtaszek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thatoi, H.N., Patra, J.K. & Das, S.K. Free radical scavenging and antioxidant potential of mangrove plants: a review. Acta Physiol Plant 36, 561–579 (2014). https://doi.org/10.1007/s11738-013-1438-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-013-1438-z

Keywords

Navigation