Skip to main content
Log in

Effect and mechanism of endophytic bacteria on growth and secondary metabolite synthesis in Salvia miltiorrhiza hairy roots

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Our study found that except Novosphingobium resinovorum (B5) Salvia miltiorrhiza root endophytic bacteria Pseudomonas brassicacearum sub sp. neoaurantiaca (B1), Rhizobium radiobacter (B2), Pseudomonas thivervalensis (B3), Pseudomonas frederiksbergensis (B4) significantly improved the activity of key enzymes 3-hydroxy-3-methyglutary1-CoA reductase and 1-deoxy-d-xylulose-5-phosphate synthase in the biosynthetic pathway of tanshinones. Specifically, HMGR activity with B1 treatment increased 2.1-fold that of control, 1-deoxy-d-xylulose-5-phosphate synthase activity with B2 treatment increased 5.0-fold that of control, which caused a significant increase in tanshinone content in the hairy roots. The dihydrotanshinone I and cryptotanshinone content under B1 treatment increased 19.2-fold and 11.3-fold, respectively, and total tanshinone content increased 3.7-fold that of control. The five endophytic bacteria B1, B2, B3, B4 and B5 all significantly decreased phenylalanine ammonia-lyase and tyrosine aminotransferase activity in hairy roots, of which, B3 treatment decreased phenylalanine ammonia-lyase activity by 46.2 %, and B2 treatment decreased tyrosine aminotransferase activity by 44.7 % compared with the control. Each of the five endophytic bacteria decomposed rosmarinic acid and salvianolic acid B, which caused a significant decrease in rosmarinic acid and salvianolic acid B content in hairy roots, with B2 treatment decreasing rosmarinic acid and salvianolic acid B content by 94.5 and 89.0 %, respectively, compared with the control. The five endophytic bacteria also inhibited the growth of S. miltiorrhiza hairy roots, of which, B2 and B4 treatment decreased hairy root biomass by 55.2 and 51.3 %, respectively, compared with the control, while hairy roots promoted the growth of B4 and B5 and inhibited the growth of B1 and B3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

S. miltiorrhiza :

Salvia miltiorrhiza

B1:

Pseudomonas brassicacearum sub sp. Neoaurantiaca

B2:

Rhizobium radiobacter

B3:

Pseudomonas thivervalensis

B4:

Pseudomonas frederiksbergensis

B5:

Novosphingobium resinovorum

HMGR:

3-Hydroxy-3-methyglutary1-CoA reductase

DXS:

1-Deoxy-d-xylulose-5-phosphate synthase

PAL:

Phenylalanine ammonia-lyase

TAT:

Tyrosine aminotransferase

DT-I:

Dihydrotanshinone I

CT:

Cryptotanshinone

T-I:

Tanshinone I

T-IIA:

Tanshinone IIA

RA:

Rosmarinic acid

SAB:

Salvianolic acid B

DAP:

Days after processing

ROS:

Reactive oxygen species

References

  • Chen H, Chen F, Zhang YL, Song JY (1999a) Production of lithospermic acid B and rosmarinic acid in hairy root cultures of Salvia miltiorrhiza. J Ind Microbiol Biotech 22(3):133–138. doi:10.1038/sj.jim.2900624

    Article  CAS  Google Scholar 

  • Chen H, Chen F, Zhang YL, Song JY (1999b) Production of lithospermic acid B and rosmarinic acid in hairy root cultures of Salvia miltiorrhiza. J Ind Microbiol Biotechnol 22(3):133–138. doi:10.1038/sj.jim.2900624

    Article  CAS  Google Scholar 

  • Cheng GW, Breen PJ (1991) Activity of phenylalanine ammonia-lyase (PAL) and concentrations of anthocyanins and phenolics in developing strawberry fruit. J Am Soc Hortic Sci 116(5):865–869

    CAS  Google Scholar 

  • De-Eknamkul W, Ellis BE (1987) Tyrosine aminotransferase: the entrypoint enzyme of the tyrosine-derived pathway in rosmarinic acid biosynthesis. Phytochemistry 26(7):1941–1946. doi:10.1016/S0031-9422(00)81734-3

    Article  CAS  Google Scholar 

  • Duan J-L, Li X-J, Gao J-M, Wang D-S, Yan Y, Xue Q-H (2013) Isolation and identification of endophytic bacteria from root tissues of Salvia miltiorrhiza Bge. and determination of their bioactivities. Ann Microbiol: 1–12. doi:10.1007/s13213-013-0614-0

  • Flores HE, Vivanco JM, Loyola-Vargas VM (1999) ‘Radicle’ biochemistry: the biology of root-specific metabolism. Trends Plant Sci 4(4):220–226

    Article  PubMed  Google Scholar 

  • Ge X, Wu J (2005) Tanshinone production and isoprenoid pathways in Salvia miltiorrhiza hairy roots induced by Ag+ and yeast elicitor. Plant Sci 168(2):487–491. doi:10.1016/j.plantsci.2004.09.012

    Article  CAS  Google Scholar 

  • Giri A, Dhingra V, Giri CC, Singh A, Ward OP, Narasu ML (2001) Biotransformations using plant cells, organ cultures and enzyme systems: current trends and future prospects. Biotechnol Adv 19(3):175–199. doi:10.1016/s0734-9750(01)00054-4

    Article  PubMed  CAS  Google Scholar 

  • Guillon S, Trémouillaux-Guiller J, Pati PK, Rideau M, Gantet P (2006) Hairy root research: recent scenario and exciting prospects. Curr Opin Plant Biol 9(3):341–346. doi:10.1016/j.pbi.2006.03.008

    Article  PubMed  CAS  Google Scholar 

  • Kumar V, Rajauria G, Sahai V, Bisaria VS (2012) Culture filtrate of root endophytic fungus Piriformospora indica promotes the growth and lignan production of Linum album hairy root cultures. Process Biochem 47(6):901–907. doi:10.1016/j.procbio.2011.06.012

    Article  CAS  Google Scholar 

  • Laule O, Furholz A, Chang HS, Zhu T, Wang X, Heifetz PB, Gruissem W, Lange BM (2003) Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 100(11):6866–6871. doi:10.1073/pnas.1031755100

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Liang ZS, Yang DF, Liang X, Zhang YJ, Liu Y, Liu FH (2012) Roles of reactive oxygen species in methyl jasmonate and nitric oxide-induced tanshinone production in Salvia miltiorrhiza hairy roots. Plant Cell Rep 31(5):873–883. doi:10.1007/s00299-011-1208-6

    Article  PubMed  CAS  Google Scholar 

  • Lichtenthaler HK (2000) Non-mevalonate isoprenoid biosynthesis: enzymes, genes and inhibitors. Biochem Soc Trans 28:785–789. doi:10.1042/0300-5127:0280785

    Article  PubMed  CAS  Google Scholar 

  • Liu G (2009) Effects of elicitor-induced expression of tyrosine aminotransferase gene on the synthesis of rosmarinic acid in Coleus Blumei. Master’s thesis, ShanDong Agricultural University, Taian

  • Liu H, Wang X, Wang D, Zou Z, Liang Z (2011) Effect of drought stress on growth and accumulation of active constituents in Salvia miltiorrhiza Bunge. Ind Crops Prod 33(1):84–88. doi:10.1016/j.indcrop.2010.09.006

    Article  CAS  Google Scholar 

  • Masuko T, Minami A, Iwasaki N, Majima T, Nishimura S-I, Lee YC (2005) Carbohydrate analysis by a phenol–sulfuric acid method in microplate format. Anal Biochem 339(1):69–72. doi:10.1016/j.ab.2004.12.001

    Article  PubMed  CAS  Google Scholar 

  • Petersen M (1997) Cytochrome P450-dependent hydroxylation in the biosynthesis of rosmarinic acid in Coleus. Phytochemistry 45(6):1165–1172. doi:10.1016/S0031-9422(97)00135-0

    Article  CAS  Google Scholar 

  • Petersen M, Simmonds MSJ (2003) Rosmarinic acid. Phytochemistry 62(2):121–125. doi:10.1016/S0031-9422(02)00513-7

    Article  PubMed  CAS  Google Scholar 

  • Petersen M, Häusler E, Karwatzki B, Meinhard J (1993) Proposed biosynthetic pathway for rosmarinic acid in cell cultures of Coleus blumei Benth. Planta 189(1):10–14. doi:10.1007/bf00201337

    Article  CAS  Google Scholar 

  • Petersen M, Abdullah Y, Benner J, Eberle D, Gehlen K, Hücherig S, Janiak V, Kim KH, Sander M, Weitzel C, Wolters S (2009) Evolution of rosmarinic acid biosynthesis. Phytochemistry 70(15–16):1663–1679. doi:10.1016/j.phytochem.2009.05.010

    Article  PubMed  CAS  Google Scholar 

  • Querol J, Besumbes O, Maria Lois L, Boronat A, Imperial S (2001) A fluorometric assay for the determination of 1-deoxy–xylulose 5-phosphate synthase activity. Anal Biochem 296(1):101–105. doi:10.1006/abio2001.5234

    Article  PubMed  CAS  Google Scholar 

  • Shanks JV, Morgan J (1999) Plant ‘hairy root’ culture. Curr Opin Plant Biol 10(10):151–155

    Article  CAS  Google Scholar 

  • Toroser D, Huber SC (1998) 3-Hydroxy-3-methylglutaryl-coenzyme a reductase kinase and sucrose–phosphate synthase kinase Activities in Cauliflower Florets: Ca2+dependence and substrate specificities. Arch Biochem Biophys 355(2):291–300. doi:10.1006/abbi 1998.0740

    Article  PubMed  CAS  Google Scholar 

  • Wang JW, Xia ZH, Tan RX (2002) Elicitation on artemisinin biosynthesis in Artemisia annua hairy roots by the oligosaccharide extract from the endophytic Colletotrichum sp B501. Acta Bot Sin 44(10):1233–1238

    CAS  Google Scholar 

  • Wang XH, Morris-Natschke SL, Lee KH (2007) New developments in the chemistry and biology of the bioactive constituents of Tanshen. Med Res Rev 27(1):133–148. doi:10.1002/med.20077

    Article  PubMed  CAS  Google Scholar 

  • Wu J-Y, Ng J, Shi M, Wu S-J (2007) Enhanced secondary metabolite (tanshinone) production of Salvia miltiorrhiza hairy roots in a novel root–bacteria coculture process. Appl Microbiol Biotechnol 77(3):543–550. doi:10.1007/s00253-007-1192-5

    Article  PubMed  CAS  Google Scholar 

  • Xiao Y, Gao S, Di P, Chen J, Chen W, Zhang L (2009) Methyl jasmonate dramatically enhances the accumulation of phenolic acids in Salvia miltiorrhiza hairy root cultures. Physiol Plant 137(1):1–9. doi:10.1111/j.1399-3054.2009.01257.x

    Article  PubMed  CAS  Google Scholar 

  • Yan Q, Hu Z, Tan R, Wu J (2005) Efficient production and recovery of diterpenoid tanshinones in hairy root cultures with in situ adsorption, elicitation and semi-continuous operation. J Biotechnol 119(4):416–424. doi:10.1016/j.jbiotec.2005.04.020

    Article  PubMed  CAS  Google Scholar 

  • Yang DF, Sheng DF, Duan QM, Liang X, Liang ZS, Liu Y (2012) PEG and ABA trigger the burst of reactive oxygen species to increase tanshinone production in Salvia miltiorrhiza hairy roots. J Plant Growth Regul 31(4):579–587. doi:10.1007/s00344-012-9268-6

    Article  CAS  Google Scholar 

  • Zhao J, Davis LC, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23(4):283–333. doi:10.1016/j.biotechadv.2005.01.003

    Article  PubMed  CAS  Google Scholar 

  • Zhou L (2005) Danshen: an overview of its chemistry, pharmacology, pharmacokinetics, and clinical use. J Clin Pharmacol 45(12):1345–1359. doi:10.1177/0091270005282630

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by National 11th Five-year Key Technology R & D Program (2007BAD79B06) and (2008BAD98B08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongsuo Liang.

Additional information

Communicated by J. V. Jorrin-Novo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, Y., Zhang, S., Zhang, J. et al. Effect and mechanism of endophytic bacteria on growth and secondary metabolite synthesis in Salvia miltiorrhiza hairy roots. Acta Physiol Plant 36, 1095–1105 (2014). https://doi.org/10.1007/s11738-014-1484-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-014-1484-1

Keywords

Navigation