Skip to main content
Log in

Determination of genomic instability and DNA methylation effects of Cr on maize (Zea mays L.) using RAPD and CRED-RA analysis

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

In this research, we aimed to evaluate DNA damage levels, DNA methylation, protein and phytohormone levels changes in corn (Zea mays L.) seedlings exposed to chromium nitrate (Cr). The results showed that the used all chromium doses caused a decreasing mitotic index, genomic template stability and soluble protein levels and increasing in RAPDs profile changes (DNA damage) and DNA hypermethylation. In additional, in the high-pressure liquid chromatography analyses, it was also observed that Cr contamination caused a decreasing in the growth-promoting hormones including gibberellic acid (GA), zeatin (ZA) and indole acetic acid (IAA) levels, in contrast to abscisic acid (ABA) level. The results of this experiment have clearly shown that Cr has epigenetic effect as well as genotoxic effect. Some of phytohormones decreasing (GA, ZA and IAA) and especially increasing of ABA levels under Cr stress may be a part of the defense system against the stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

GTS:

Genomic template stability

GA:

Gibberellic acid

ZA:

Zeatin

IAA:

Indole acetic acid

ABA:

Absisic acid

ROS:

Reactive oxygen species

References

  • Ali AHK, Kondo K, Namura T, Senba Y, Takizawa H, Nakagawa Y, Toba H, Kenzaki K, Sakiyama S, Tangoku A (2011) Aberrant DNA methylation of some tumor suppressor genes in lung cancers from workers with chromate exposure. Mol Carcinog 50:89–99

    Article  CAS  PubMed  Google Scholar 

  • Andersson MA, Grawe KVP, Karlsson OM, Abramsson-Zetterberg LAG, Björn E (2007) Evaluation of the potential genotoxicity of chromium picolinate in mammalian cells in vivo and in vitro. Hellman Food Chem Toxicol 45:1097–1106

    Article  CAS  Google Scholar 

  • Benova D, Hadjidekova V, Hristova R, Nikolova T, Boulanova M, Georgieva I, Grigorova M, Popov T, Panev T, Georgieva R, Natarajan AT, Darroudi F, Nilsson R (2002) Cytogenetic effects of hexavalent chromium in Bulgarian chromium platers. Mutat Res 514:29–38

    Article  CAS  PubMed  Google Scholar 

  • Blankenship LJ, Manning FC, Orenstein JM, Patierno SR (1994) Apoptosis is the mode of cell death caused by carcinogenic chromium. Toxicol Appl Pharmacol 126:75–83

    Article  CAS  PubMed  Google Scholar 

  • Błasiak J, Kowalik J (2000) A comparison of the in vitro genotoxicity of tri- and hexavalent chromium. Mutat Res Genet Toxicol Environ Mutagen 469(1):135–145

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Bridgewater LC, Manning FCR, Patierno SR (1998) Arrest of replication by mammalian DNA polymerases a and b caused by chromium-DNA lesions. Mol Carcinog 23:201–206

    Article  CAS  PubMed  Google Scholar 

  • Cakmak I, Marschner H, Bangert F (1989) Effect of zinc nutritional status on growth, protein metabolism and levels of indole-3-acetic acid and other phytohormones in bean (Phaseolus vulgaris L.). J Exp Bot 40:404–412

    Article  Google Scholar 

  • Casadevall M, Fresco PC, Kortenkamp A (1999) Chromium(VI)- mediated DNA damage: oxidative pathways resulting in the formation of DNA breaks and abasic sites. Chem Biol Interact 123:117–132

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Thilly WG (1994) Mutational spectrum of chromium(VI) in human cells. Mutat Res 323:21–27

    Article  CAS  PubMed  Google Scholar 

  • Cheng TS, Choudhurib S, Muldoon-Jacobsa K (2012) Epigenetic targets of some toxicologically relevant metals. J Appl Toxicol 32(9):643–653

    Google Scholar 

  • Chinnusamy V, Gong Z, Zhu JK (2008) Abscisic acid-mediated epigenetic processes in plant development and stress responses. J Integr Plant Biol 50:1187–1195

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Erturk FA, Ay H, Nardemir G, Agar G (2012) Molecular determination of genotoxic effects of cobalt and nickel on maize (Zea mays L.) by RAPD and protein analyses. Toxicol Ind Health. doi:10.1177/0748233712442709

  • Fujioka S, Sakurai A, Yamaguchi I, Murofushi N, Takahashi N, Kaihara S, Takimoto A, Cleland CF (1986) Flowering and endogenous levels of plant hormones in Lemna species. Plant Cell Physiol 271:927–1304

    Google Scholar 

  • Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine, 4th edn. Clarendon Press, Oxford

    Google Scholar 

  • Hernandez-Allica J, Garbisu C, Barrutia O, Becerril JM (2007) EDTA-induced heavy metal accumulation and phytotoxicity in cardoon plants. Environ Exp Bot 60:26–32

    Article  CAS  Google Scholar 

  • Kasprzak KS (2002) Oxidative DNA and protein damage in metal induced toxicity and carcinogenesis. Free Radic Biol Med 32:958–967

    Article  CAS  PubMed  Google Scholar 

  • Kondo K, Takahashi Y, Hirose Y (2006) The reduced expression and aberrant methylation of p16INK4a in chromate workers with lung cancer. Lung Cancer 53:295–302

    Article  PubMed  Google Scholar 

  • Kuraishi S, Tasaki K, Sakurai N, Sadatoku K (1991) Changes in levels of cytokinins in etiolated squash seedlings after illumination. Plant Cell Physiol 32:585–591

    CAS  Google Scholar 

  • Labra M, Grassi F, Imazio S (2004) Genetic and DNAmethylation changes induced by potassium dichromate in Brassica napus L. Chemosphere 54:1049–1058

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of Bacteriophage-T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Li G, Quiros CF (2001) Sequence-Related Amplified Polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet 103:455–461

    Article  CAS  Google Scholar 

  • Liu S, Medvedovic M, Dixon K (1999) Mutational specificity in a shuttle vector replicating in chromium(VI)-treated mammalian cells. Environ Mol Mutagen 33:313–319

    Article  CAS  PubMed  Google Scholar 

  • Manning FC, Xu J, Patierno SR (1992) Transcriptional inhibition by carcinogenic chromate: relationship to DNA damage. Mol Carcinog 6:270–279

    Article  CAS  PubMed  Google Scholar 

  • Nickens KP, Patierno SR, Ceryak S (2010) Chromium genotoxicity: a doubleedged sword. Chem Biol Interact 188:276–288

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • O’Brien TJ, Ceryak S, Patierno SR (2003) Complexities of chromium carcinogenesis: role of cellular response, repair and recovery mechanisms. Mutat Res 533:3–36

    Article  PubMed  Google Scholar 

  • O’Brien TJ, Jiang GH, Chun G, Mandel HG, Westphal CS, Kahen K, Montaser A, States JC, Patierno SR (2006) Incision of trivalent chromium [Cr(III)]-induced DNA damage by Bacillus caldotenax UvrABC endonuclease. Mutat Res Genet Toxicol Environ Mutagen 610:85–92

    Article  Google Scholar 

  • Ozfidan C, Turkan I, Sekmen AH, Seckin B (2013) Time course analysis of ABA and non-ionic osmotic stress-induced changes in water status, chlorophyll fluorescence and osmotic adjustment in Arabidopsis thaliana wild-type (Colombia) and ABA deficient mutant (aba2). Environ Exp Bot 86:44–51

    Article  CAS  Google Scholar 

  • Papageorgioua I, Brownb C, Schinsc R, Singhc S, Newsond R, Davise S, Fisherf J, Inghamb E, Casea CP (2007) The effect of nano- and micron-sized particles of cobalt–chromium alloy on human fibroblasts in vitro. Biomaterials 28:2946–2958

    Article  Google Scholar 

  • Schutzendubel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal induced oxidative stress and protection by mycorrhization. J Exp Bot 53(372):1351–1365

    Article  CAS  PubMed  Google Scholar 

  • Shanker AK, Cervantes C, Tavera-Loza H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31:739–753

    Article  CAS  PubMed  Google Scholar 

  • Sharma I, Kumar P, Bhardwaj R (2011) Effect of 28-homobrassinolide on antioxidant defence system in Raphanus sativus L. under chromium toxicity. Ecotoxicology 20:862–874. doi:10.1007/s10646-011-0650-0

    Article  CAS  PubMed  Google Scholar 

  • Snow ET (1992) Metal carcinogenesis: mechanistic implications. Pharmacol Ther 53:31–65

    Article  CAS  PubMed  Google Scholar 

  • Snow ET, Xu L (1991) Chromium(III) bound to DNA templates promotes increased polymerase processivity and decreased fidelity during replication in vitro. Biochemistry 30:11238–11245

    Article  CAS  PubMed  Google Scholar 

  • Takahashi Y, Kondo K, Hirose T (2005) Microsatellite instability and protein expression of the DNA mismatch repair gene, hMLH1, of lung cancer in chromate-exposed workers. Mol Carcinog 42:150–158

    Article  CAS  PubMed  Google Scholar 

  • Taşpınar MS, Agar G, Yıldırım N, Sunar S, Aksakal O, Bozari S (2009) Evaluation of selenium effect on cadmium genotoxicity in Vicia faba using RAPD. J Food Agric Environ 7(3&4):857–860

    Google Scholar 

  • Tsou TC, Lin RJ, Yang JL (1997) Mutational spectrum induced bychromium(III) in shuttle vectors replicated in human cells: relationship to Cr(III)–DNA interactions. Chem Res Toxicol 10:962–970

    Article  CAS  PubMed  Google Scholar 

  • Turker M, Battal P, Agar G, Gulluce M, Sahin F, Erez ME, Yildirim N (2008) Allelopathic effects of plants extracts on physiological and cytological processes during maize seed germination. Allelopathy J 21:273–286

    Google Scholar 

  • Unyayar S, Celik A, Cekic FO, Gozel A (2006) Cadmium-induced genotoxicity, cytotoxicity and lipid peroxidation in Allium sativum and Vicia faba. Mutagenesis 21:77–81

    Article  CAS  PubMed  Google Scholar 

  • Wise JP Sr, Wise SS, Little JE (2002) The cytotoxicity and genotoxicity of particulate and soluble hexavalent chromium in human lung cells. Mutat Res 517:221–229

    Article  CAS  PubMed  Google Scholar 

  • Wise SS, Holmes AL, Ketterer ME, Hartsock WJ, Fomchenko E, Katsifis SP, Thompson WD, Wise JP Sr (2004) Chromium is the proximate clastogenic species for lead chromate-induced clastogenicity in human bronchial cells. Mutat Res 560:79–89

    Article  CAS  PubMed  Google Scholar 

  • Wise S, Holmes AL, Wise JP Sr (2008) Hexavalent chromium-induced DNA damage and repair mechanisms. Rev Environ Health 23(1):39–57

    Article  CAS  PubMed  Google Scholar 

  • Wua F, Wua W-Y, Kuoa H-W, Liub C-S, Wangc R-Y, Laia J-S (2001) Effect of genotoxic exposure to chromium among electroplating workers in Taiwan. Sci Total Environ 279:21–28

    Google Scholar 

  • Yu X-Z, Gu J-D, Huang S-Z (2007) Hexavalent chromium induced stress and metabolic responses in hybrid willows. Ecotoxicology 16:299–309

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guleray Agar.

Additional information

Communicated by S. Abe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erturk, F.A., Agar, G., Arslan, E. et al. Determination of genomic instability and DNA methylation effects of Cr on maize (Zea mays L.) using RAPD and CRED-RA analysis. Acta Physiol Plant 36, 1529–1537 (2014). https://doi.org/10.1007/s11738-014-1529-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-014-1529-5

Keywords

Navigation