Skip to main content

Advertisement

Log in

Genetic approaches for breeding heat stress tolerance in faba bean (Vicia faba L.)

  • Review
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Vicia faba L. (faba bean) is an important legume and is cultivated essentially as a cool-season crop. Changes in sowing dates and lack of precipitation expose faba bean crop to drought and heat stresses. The gradual rise in global temperatures owing to climate change is likely to exacerbate the detrimental effects of hot and dry climatic conditions on faba bean cultivation. High temperature stress is particularly damaging to faba bean during the flowering period, when the viability of pollen is critical for successful reproduction. Recent studies have shown that maintenance of protein homeostasis through synthesis of heat shock proteins plays a key role in the heat response of plants. To date, there has been no significant work linking the heat response of faba bean to the repertoire of its heat shock proteins. While quantitative trait loci have been identified for resistance against biotic stresses in faba bean, there is no parallel success with abiotic stresses in this species. Programs aiming at genetic improvement of the heat/drought resistance of this crop by both conventional breeding and molecular breeding methods are hampered because of the large and majorly ill-analyzed genome of faba bean plants. Likewise, molecular and biotechnology-related tools are poorly developed for faba bean; as a result, the fruits of transgenic research developed with model plant species are not reaching this crop. While specifically discussing the prospects for the genetic improvement of faba bean against heat and drought stresses, we highlight the areas of research which need to be strengthened on faba bean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdelmula AA, Abuanja IK (2007) Genotypic responses, yield stability, and association between characters among some of Sudanese Faba bean (Vicia faba L.) genotypes under heat stress. Proceedings of the Tropical German Conference (Utilization of diversity in land use systems: Sustainable and organic approaches to meet human needs), Witzenhausen, 9–11 Oct 2007

  • Adisarwanto T, Knight R (1997) Effect of sowing date and plant density on yield and yield components in the faba bean. Austr J Agri Res 48:1161–1168

    Article  Google Scholar 

  • Agarwal M, Katiyar-Agarwal S, Grover A (2002) Plant Hsp100 proteins: structure, function and regulation. Plant Sci 163:397–405

    Article  CAS  Google Scholar 

  • Agarwal M, Sahi C, Katiyar-Agarwal S et al (2003) Molecular characterization of rice hsp101: complementation of yeast hsp104 mutation by disaggregation of protein granules and differential expression in indica and japonica rice types. Plant Mol Biol 51:543–553

    Article  CAS  PubMed  Google Scholar 

  • Ahsan N, Donnart T, Nouri M-Z, Komatsu S (2010) Tissue-specific defense and thermo-adaptive mechanisms of soybean seedlings under heat stress revealed by proteomic approach. J Proteome Res 9:4189–4204

    Article  CAS  PubMed  Google Scholar 

  • Alghamdi SS (2007) Genetic behavior of some selected faba bean genotypes. Afr Crop Sci Conf Proc 8:709–714

    Google Scholar 

  • Alghamdi SS (2009) Chemical composition of faba bean (Vicia faba L.) genotypes under various water regimes. Pak J Nutr 8:477–482

    Article  CAS  Google Scholar 

  • Al-Ghamdi SS, Al-Tahir OA (2001) Temperature and solar radiation effects on faba bean (Vicia faba L.) growth and grain yield. Saudi J Biol Sci 8:171–183

    Google Scholar 

  • Al-Suhaibani NA (2009) Influence of early water deficit on seed yield and quality of faba bean under arid environment of Saudi Arabia. Am-Eurasian J Agric Environ Sci 5:649–654

    CAS  Google Scholar 

  • Al-Whaibi MH (2011) Plant heat-shock proteins: a mini review. J King Saud Univ Sci 23:139–150

    Article  Google Scholar 

  • Anwar F, Alghamdi SS, Ammar MH, Siddique KHM (2011) An efficient in vitro regeneration protocol for faba bean (Vicia faba L.). J Med Plants Res 5:6460–6467

    CAS  Google Scholar 

  • Avola G, Cavallaro V, Patanè C, Riggi E (2008) Gas exchange and photosynthetic water use efficiency in response to light, CO2 concentration and temperature in Vicia faba. J Plant Physiol 165:796–804

    Article  CAS  PubMed  Google Scholar 

  • Bahgat S, Shabban OA, El-Shihy O, Lightfoot DA, El-Shemy HA (2008) Establishment of the regeneration system for Vicia faba L. Curr Issues Mol Biol 11(Suppl 1):47–54

    Google Scholar 

  • Böttinger P, Steinmetz A, Schieder O, Pickardt T (2001) Agrobacterium-mediated transformation of Vicia faba. Mol Breed 8:243–254

    Article  Google Scholar 

  • Cary JW, Lax AR, Flurkey WH (1992) Cloning and characterization of cDNAs coding for Vicia faba polyphenol oxidase. Plant Mol Biol 20:245–253

    Article  CAS  PubMed  Google Scholar 

  • Chbouki S, Shipley B, Bamouh A (2005) Path models for the abscission of reproductive structures in three contrasting cultivars of faba bean (Vicia faba). Can J Bot 83:264–271

    Article  Google Scholar 

  • Crépon K, Marget P, Peyronnet C et al (2010) Nutritional value of faba bean (Vicia faba L.) seeds for feed and food. Field Crops Res 115:329–339

    Article  Google Scholar 

  • Cruz-Izquierdo S, Avila CM, Satovic Z et al (2012) Comparative genomics to bridge Vicia faba with mode land closely-related legume species: stability of QTLs for flowering and yield-related traits. Theor Appl Genet 125:1767–1782

    Article  CAS  PubMed  Google Scholar 

  • Cui X-H, Hao F-S, Chen H, Chen J, Wang X-C (2008) Expression of the Vicia faba VfPIP1 gene in Arabidopsis thaliana plants improves their drought resistance. J Plant Res 121:207–214

    Article  CAS  PubMed  Google Scholar 

  • De Costa WAJM, Dennett MD, Ratnaweera U, Nyalemegbe K (1997) Effects of different water regimes on field-grown determinate and indeterminate faba bean(Vicia faba L.). I. Canopy growth and biomass production. Field Crops Res 49:83–93

    Article  Google Scholar 

  • Duc G, Bao S, Baum M et al (2010) Diversity maintenance and use of Vicia faba L. genetic resources. Field Crops Res 115:270–278

    Article  Google Scholar 

  • Egli DB, TeKrony DM, Heitholt JJ, Rupe J (2005) Air temperature during seed filling and soybean seed germination and vigor. Crop Sci 45:1329–1335

    Article  Google Scholar 

  • Ellis RH, Roberts EH, Summerfield RJ (1988) Variation in the optimum temperature for rates of seedling emergence and progress towards flowering amongst six genotypes of faba bean (Vicia faba). Ann Bot 62:119–126

    Google Scholar 

  • Ellis RH, Summerfield RJ, Roberts EH (1990) Flowering in faba bean: genotypic differences in photoperiod sensitivity, similarities in temperature sensitivity, and implications for screening germplasm. Ann Bot 65:129–138

    Google Scholar 

  • Ellwood SR, Phan HTT, Jordan M et al (2008) Construction of a comparative genetic map in faba bean (Vicia faba L.); conservation of genome structure with Lens culinaris. BMC Genom 9:380. doi:10.1186/1471-2164-9-380

    Article  Google Scholar 

  • El-Tayeb MA (2006) Differential response of two Vicia faba cultivars to drought: growth, pigments, lipid peroxidation, organic solutes, catalase and peroxidase activity. Acta Agronom Hungar 54:25–37

    Article  CAS  Google Scholar 

  • Filek M, Baczek R, Niewiadomska E, Pilipowicz M, Kościelniak J (1997) Effect of high temperature treatment of Vicia faba roots on the oxidative stress enzymes in leaves. Acta Biochim Pol 44:315–322

    CAS  PubMed  Google Scholar 

  • Frank G, Pressman E, Ophir R et al (2009) Transcriptional profiling of maturing tomato (Solanum lycopersicum L.) microspores reveals the involvement of heat shock proteins, ROS scavengers, hormones, and sugars in the heat stress response. J Exp Bot 60:3891–3908

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gagliardi D, Breton C, Chaboud A, Vergne P, Dumas C (1995) Expression of heat shock factor and heat shock protein 70 genes during maize pollen development. Plant Mol Biol 29:841–856

    Article  CAS  PubMed  Google Scholar 

  • Gepstein S, Grover A, Blumwald E (2008) Producing biopharmaceuticals in the desert: building an abiotic stress tolerance in plants for salt, heat and drought. In: Knäblein J (ed) Modern biopharmaceuticals: design, development and optimization. Wiley, Weinheim, pp 967–994. doi:10.1002/9783527620982.ch40

    Google Scholar 

  • Ghandorah MO, El-Shawaf IIS (1993) Genetic variability, heritability estimates, and predicted genetic advance for some characters in Faba Bean (Vicia faba L.). J King Saud Univ Agri Sci 5:207–218

    Google Scholar 

  • Gounaris K, Brain ARR, Quinn PJ, Williams WP (1984) Structural reorganization of chloroplast thylakoid membranes in response to heat stress. Biochim Biophys Acta 766:198–208

    Article  CAS  Google Scholar 

  • Grover A, Mittal D, Negi M, Lavania D (2013) Generating high temperature tolerance transgenic plants: achievements and challenges. Plant Sci 205–206:38–47

    Article  PubMed  Google Scholar 

  • Hamada AM (2001) Alteration in growth and some relevant metabolic processes of broad bean plants during extreme temperatures exposure. Acta Physiol Plant 23:193–200

    Article  Google Scholar 

  • Hanafy M, Pickardt T, Kiesecker H, Jacobsen H-J (2005) Agrobacterium-mediated transformation of faba bean (Vicia faba L.) using embryo axes. Euphytica 142:227–236

    Article  CAS  Google Scholar 

  • Hanafy MS, El-Banna A, Schumacher HM, Jacobsen H-J, Hassan FS (2013) Enhanced tolerance to drought and salt stresses in transgenic faba bean (Vicia faba L.) plants by heterologous expression of the PR10 gene from potato. Plant Cell Rep 32:663–674

    Article  CAS  PubMed  Google Scholar 

  • Hopf N, Plesofsky-Vig N, Brambl R (1992) The heat shock response of pollen and other tissues of maize. Plant Mol Biol 19:623–630

    Article  CAS  PubMed  Google Scholar 

  • Ischebeck T, Valledor L, Lyon D et al (2014) Comprehensive cell-specific protein analysis in early and late pollen development from diploid microsporocytes to pollen tube growth. Mol Cell Proteomics 13:295–310

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ismail RB, Elazab HEM, Hussein GMH, Metry EA (2011) In vitro root induction of faba bean (Vicia faba L.). GM Crops 2:176–181

    Article  PubMed  Google Scholar 

  • Jagadish SVK, Muthurajan R, Oane R et al (2010) Physiological and proteomic approaches to address heat tolerance during anthesis in rice (Oryza sativa L.). J Exp Bot 61:143–156

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jelenić S, Mitrikeski PT, Papeš D, Jelaska S (2000) Agrobacterium-mediated transformation of broad bean Vicia faba L. Food Technol Biotechnol 38:167–172

    Google Scholar 

  • Jensen ES, Peoples MB, Hauggaard-Nielsen H (2010) Faba bean in cropping systems. Field Crops Res 115:203–216

    Article  Google Scholar 

  • Kaur S, Pembleton LW, Cogan NOI et al (2012) Transcriptome sequencing of field pea and faba bean for discovery and validation of SSR genetic markers. BMC Genom 13:104. doi:10.1186/1471-2164-13-104

    Article  CAS  Google Scholar 

  • Kaur S, Kimber RBE, Cogan NOI et al (2014) SNP discovery and high-density genetic mapping in faba bean (Vicia faba L.) permits identification of QTLs for ascochyta blight resistance. Plant Sci 217–218:47–55

    Article  PubMed  Google Scholar 

  • Keeler SJ, Boettger CM, Haynes JG et al (2000) Acquired thermotolerance and expression of the HSP100/ClpB genes of lima bean. Plant Physiol 123:1121–1132

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Khan HR, Paull JG, Siddique KHM, Stoddard FL (2010) Faba bean breeding for drought-affected environments: a physiological and agronomic perspective. Field Crop Res 115:279–286

    Article  Google Scholar 

  • Khazaei H, O’Sullivan DM, Sillanpää MJ, Stoddard FL (2014) Use of synteny to identify candidate genes underlying QTL controlling stomatal traits in faba bean (Vicia faba L.). Theor Appl Genet. 127:2371–2385. doi:10.1007/s00122-014-2383-y

    Article  PubMed  Google Scholar 

  • Kitano M, Saitoh K, Kuroda K (2006) Effects of high temperature on flowering and pod set in soybean. Sci Rep Fac Agri Okayama Univ 95:49–55

    Google Scholar 

  • Lee YJ, Nagao RT, Key JL (1994) A soyabean 101-KD heat shock protein complements yeast HSP104 deletion mutant in acquiring thermotolerance. Plant Cell 6:1889–1897

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lenne C, Block MA, Garin J, Douce R (1995) Sequence and expression of the mRNA encoding HSP22, the mitochondrial small heat-shock protein in pea leaves. Biochem J 311:805–813

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lin M-y, K-h Chai, S-s Ko et al (2014) A positive feedback loop between HSP101 and HSA32 modulates long-term acquired thermotolerance illustrating diverse heat stress responses in rice varieties. Plant Physiol 164:2045–2053

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Link W, Abdelmula AA, von Kittlitz E et al (1999) Genotypic variation for drought tolerance in Vicia faba. Plant Breed 118:477–483

    Article  Google Scholar 

  • Link W, Balko C, Stoddard FL (2010) Winter hardiness in faba bean: physiology and breeding. Field Crops Res 115:287–296

    Article  Google Scholar 

  • Macas J, Gualberti G, Nouzová M et al (1996) Construction of chromosome-specific DNA libraries covering the whole genome of field bean (Vicia faba L.). Chromosome Res 4:531–539

    Article  CAS  PubMed  Google Scholar 

  • Marrs KA, Casey ES, Capitant SA et al (1993) Characterization of two maize HSP90 heat shock protein genes: expression during heat shock, embryogenesis, and pollen development. Dev Genet 14:27–41

    Article  CAS  PubMed  Google Scholar 

  • McDonald GK, Paulsen GM (1997) High temperature effects on photosynthesis and water relations of grain legumes. Plant Soil 196:47–58

    Article  CAS  Google Scholar 

  • Mwanamwenge J, Loss SP, Siddique KHM, Cocks PS (1999) Effect of water stress during floral initiation, flowering and podding on the growth and yield of faba bean (Vicia faba L.). Eur J Agron 11:1–11

    Article  Google Scholar 

  • Negruk V (2013) Mitochondrial genome sequence of the legume Vicia faba. Front Plant Sci 4:1–11

    Article  Google Scholar 

  • Nieden UZ, Neumann D, Bucka A, Nover L (1995) Tissue-specific localization of heat-stress proteins during embryo development. Planta 196:530–538

    Google Scholar 

  • Oshino T, Abiko M, Saito R et al (2007) Premature progression of anther early developmental programs accompanied by comprehensive alterations in transcription during high-temperature injury in barley plants. Mol Genet Genom 278:31–42

    Article  CAS  Google Scholar 

  • Patrick JW, Stoddard FL (2010) Physiology of flowering and grain filling in faba bean. Field Crops Res 115:234–242

    Article  Google Scholar 

  • Prasad PVV, Boote KJ, Allen LH Jr (2006) Adverse high temperature effects on pollen viability, seed-set, seed yield and harvest index of grain-sorghum [Sorghum bicolor (L.) Moench] are more severe at elevated carbon dioxide due to higher tissue temperatures. Agric For Meteorol 139:237–251

    Article  Google Scholar 

  • Pressman E, Shaked R, Firon N (2007) Tomato (Lycopersicon esculentum) response to heat stress: focus on pollen grains. Plant Stress 1:216–227

    Google Scholar 

  • Rispail N, Kaló P, Kiss GB et al (2010) Model legumes contribute to faba bean breeding. Field Crops Res 115:253–269

    Article  Google Scholar 

  • Rubiales D (2010) Faba beans in sustainable agriculture. Field Crops Res 115:201–202

    Article  Google Scholar 

  • Sarkar NK, Kundnani P, Grover A (2013a) Functional analysis of Hsp70 superfamily proteins of rice (Oryza sativa). Cell Stress Chaperon 18:427–437

    Article  CAS  Google Scholar 

  • Sarkar NK, Thapar U, Kundnani P, Panwar P, Grover A (2013b) Functional relevance of J-protein family of rice (Oryza sativa). Cell Stress Chaperon 18:321–331

    Article  CAS  Google Scholar 

  • Sarkar NK, Kim Y-K, Grover A (2014) Coexpression network analysis associated with call of rice seedlings for encountering heat stress. Plant Mol Biol 84:125–143

    Article  CAS  PubMed  Google Scholar 

  • Satovic Z, Avila CM, Cruz-Izquierdo S et al (2013) A reference consensus genetic map for molecular markers and economically important traits in faba bean (Vicia faba L.). BMC Genom 14:932. doi:10.1186/1471-2164-14-932

    Article  Google Scholar 

  • Schirmer EC, Lindquist S, Vierling E (1994) An Arabidopsis heat shock protein complements a thermotolerance defect in yeast. Plant Cell 6:1899–1909

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sekara A, Poniedziaek M, Ciura J, Jedrszczyk E (2001) The effect of meteorological factors upon flowering and pod setting of faba bean (Vicia faba L.) at different sowing times. Veg Crop Res Bullet 54:65–68

    Google Scholar 

  • Simões-Araújo JL, Rumajanek NG, Margis-Pinheiro M (2003) Small heat shock proteins genes are differentially expressed in distinct varieties of common bean. Braz J Plant Physiol 15:33–41

    Article  Google Scholar 

  • Singh A, Grover A (2008) Genetic engineering for heat tolerance in plants. Physiol Mol Biol Plants 14:155–166

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Singh A, Grover A (2010) Plant Hsp100/ClpB-like proteins: poorly-analyzed cousins of yeast ClpB machine. Plant Mol Biol 74:395–404

    Article  CAS  PubMed  Google Scholar 

  • Sliman ZT (1993) Response of faba beans (Vicia faba L.) to seeding date in central region of Saudi Arabia. J King Saud Univ Agri Sci 5:219–226

    Google Scholar 

  • Stoddard FL, Balko C, Erskine W et al (2006) Screening techniques and sources of resistance to abiotic stresses in cool-season food legumes. Euphytica 147:167–186

    Article  Google Scholar 

  • Suresh S, Park J-H, Cho G-T et al (2013) Development and molecular characterization of 55 novel polymorphic cDNA-SSR markers in faba bean (Vicia faba L.) using 454 pyrosequencing. Molecules 18:1844–1856

    Article  CAS  PubMed  Google Scholar 

  • Tavakkoli E, Paull J, Rengasamy P, McDonald GK (2012) Comparing genotypic variation in faba bean (Vicia faba L.) in response to salinity in hydroponic and field experiments. Field Crops Res 127:99–108

    Article  Google Scholar 

  • Terzopoulos PJ, Bebeli PJ (2008) Genetic diversity analysis of Mediterranean faba bean (Vicia faba L.) with ISSR markers. Field Crops Res 108:39–44

    Article  Google Scholar 

  • Torres AM, Román B, Avila CM et al (2006) Faba bean breeding for resistance against biotic stresses: towards application of marker technology. Euphytica 147:67–80

    Article  Google Scholar 

  • Torres AM, Avila CM, Gutierrez N et al (2010) Marker-assisted selection in faba bean (Vicia faba L.). Field Crop Res 115:243–252

    Article  Google Scholar 

  • Varshney RK, Kudapa H, Roorkiwal M et al (2012) Advances in genetics and molecular breeding of three legume crops of semi-arid tropics using next-generation sequencing and high-throughput genotyping technologies. J Biosci 37:811–820

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Murali Mohan S, Gaur PM et al (2013) Achievements and prospects of genomics-assisted breeding in three legume crops of the semi-arid tropics. Biotech Adv 31:1120–1134

    Article  Google Scholar 

  • Volkov RA, Panchuk II, Schöffl F (2005) Small heat shock proteins are differentially regulated during pollen development and following heat stress in tobacco. Plant Mol Biol 57:487–502

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Gan YT, Clarke F, McDonald CL (2006) Response of chickpea yield to high temperature stress during reproductive development. Crop Sci 46:2171–2178

    Article  Google Scholar 

  • Wang Y, Zhang W-Z, Song L-F et al (2008) Transcriptome analysis show changes in gene expression to accompany pollen germination and tube growth in Arabidopsis. Plant Physiol 148:1201–1211

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yan H, Yan H, Li G et al (2010) Expression of human cytomegalovirus pp150 gene in transgenic Vicia faba L. and immunogenicity of pp150 protein in mice. Biological 38:265–272

    Article  CAS  Google Scholar 

  • Yang KZ, Xia C, Liu XL et al (2009) A mutation in thermosensitive male sterile 1, encoding a heat shock protein with DnaJ and PDI domains, leads to thermosensitive gametophytic male sterility in Arabidopsis. Plant J 57:870–882

    Article  CAS  PubMed  Google Scholar 

  • Yang T, S-y Bao, Ford R et al (2012) High-throughput novel microsatellite marker of faba bean via next generation sequencing. BMC Genom 13:602. doi:10.1186/1471-2164-13-602

    Article  CAS  Google Scholar 

  • Young LW, Wilen RW, Bonham-Smith PC (2004) High temperature stress of Brassica napus during flowering reduces micro- and megagametophyte fertility, induces fruit abortion, and disrupts seed production. J Exp Bot 55:485–495

    Article  CAS  PubMed  Google Scholar 

  • Zinn KE, Tunc-Ozdemir M, Harper JF (2010) Temperature stress and plant sexual reproduction: uncovering the weakest links. J Exp Bot 61:1959–1968

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

DL is thankful to Council of Scientific and Industrial Research, Government of India and University Teaching Assistant fellowship, University of Delhi for the research fellowship award. RK is thankful to University Grants Commission, Government of India for research fellowship award. MHS and MHA-W thank project funding from National Plan for Science and Technology Program, Saudi Arabia. AG gratefully acknowledges Visiting Professorship of King Saud University, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Grover.

Additional information

Communicated by A.K. Kononowicz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lavania, D., Siddiqui, M.H., Al-Whaibi, M.H. et al. Genetic approaches for breeding heat stress tolerance in faba bean (Vicia faba L.). Acta Physiol Plant 37, 1737 (2015). https://doi.org/10.1007/s11738-014-1737-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-014-1737-z

Keywords

Navigation