Skip to main content
Log in

The influence of silicon application on growth and photosynthesis response of salt stressed grapevines (Vitis vinifera L.)

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The influences of silicon (Si) on parameters, such as plant growth, pigment contents, photosynthesis, chlorophyll fluorescence, soluble sugar and starch concentration, and some cell ultra-structures, were investigated in grapevines under salt stress. Compared with the control, the treatment with 100 mM NaCl dramatically inhibited the growth of grapevines and greatly decreased the content of pigments. Silicon treatment in the absence of salt had negative effects in most observed parameters. However, the addition of Si under salt stress improved all growth parameters and increased the pigments and photosynthetic rates compared with the NaCl treatment. Furthermore, investigation of chlorophyll fluorescence, soluble sugars, starch concentration and cell ultra-structure indicated that photosynthesis in the NaCl treatment decreased. The supplement of silicon mitigated the inhibited photosynthesis caused by NaCl, and increased the maximum yield and potential photochemical efficiency of the photochemical reactions in photosystem II. On the other hand, the addition of exogenous Si and NaCl also increased the concentration of soluble sugars and starch, and influenced ultra-structural changes. It is possible that silicon might play an important role in protecting photosynthetic machinery from damage and improving the salt-tolerance of the grape by increasing the concentration of soluble sugars and starch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Al-aghabary K, ZhuJun Z, QinHua S (2004) Influence of silicon supply on chlorophyll content, chlorophyll fluorescence, and antioxidative enzyme activities in tomato plants under salt stress. J Plant Nutr 27:2101–2115

    Article  CAS  Google Scholar 

  • Amirjani MR (2011) Effect of salinity stress on growth, sugar content, pigments and enzyme activity of rice. Int J Bot 7:73–81

    Article  CAS  Google Scholar 

  • Caemmerer S, Farquhar G (1981) Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153:376–387

    Article  Google Scholar 

  • Cengiz K, Levent T, David H (2006) Effect of silicon on plant growth and mineral nutrition of maize grown under water-stress conditions. J Plant Nutr 29:1469–1480

    Article  Google Scholar 

  • Cheeseman JM (1988) Mechanisms of salinity tolerance in plants. Plant Physiol 87:547–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cornillon P, Palloix A (1997) Influence of sodium chloride on the growth and mineral nutrition of pepper cultivars. J Plant Nutr 20:1085–1094

    Article  CAS  Google Scholar 

  • Cramer GR, Ergül A, Grimplet J, Tillett RL, Tattersall EAR, Bohlman MC, Vincent D, Sonderegger J, Evans J, Osborne C (2007) Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Funct Integr Genomics 7:111–134

    Article  CAS  PubMed  Google Scholar 

  • Downton W, Loveys B, Grant W (1990) Salinity effects on the stomatal behaviour of grapevine. N Phytol 116:499–503

    Article  CAS  Google Scholar 

  • Fisarakis I, Chartzoulakis K, Stavrakas D (2001) Response of Sultana vines (V. vinifera L.) on six rootstocks to NaCl salinity exposure and recovery. Agric Water Manag 51:13–27

    Article  Google Scholar 

  • Gong H, Randall D, Flowers T (2006) Silicon deposition in the root reduces sodium uptake in rice (Oryza sativa L.) seedlings by reducing bypass flow. Plant Cell Environ 29:1970–1979

    Article  CAS  PubMed  Google Scholar 

  • Hurry VM, Strand A, Tobiaeson M, Gardestrom P, Oquist G (1995) Cold hardening of spring and winter wheat and rape results in differential effects on growth, carbon metabolism, and carbohydrate content. Plant Physiol 109:697–706

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krapp A, Stitt M (1995) An evaluation of direct and indirect mechanisms for the “sink-regulation” of photosynthesis in spinach: changes in gas exchange, carbohydrates, metabolites, enzyme activities and steady-state transcript levels after cold-girdling source leaves. Planta 195:313–323

    Article  CAS  Google Scholar 

  • Krause GH, Weis E (1984) Chlorophyll fluorescence as a tool in plant physiology. Photosynth Res 5:139–157

    Article  CAS  PubMed  Google Scholar 

  • Liang Y (1999) Effects of silicon on enzyme activity and sodium, potassium and calcium concentration in barley under salt stress. Plant Soil 209:217–224

    Article  CAS  Google Scholar 

  • Liang Y, Shen Q, Shen Z, Ma T (1996) Effects of silicon on salinity tolerance of two barley cultivars. J Plant Nutr 19:173–183

    Article  CAS  Google Scholar 

  • Liang Y, Sun W, Zhu YG, Christie P (2007) Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. Environ Pollut 147:422–428

    Article  CAS  PubMed  Google Scholar 

  • Loreto F, Velikova V (2001) Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol 127:1781–1799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma JF, Yamaji N (2006) Silicon uptake and accumulation in higher plants. Trends Plant Sci 11:392–397

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Miyake Y, Takahashi E (2001) Silicon as a beneficial element for crop plants. Stud Plant Sci 8:17–39

    Article  CAS  Google Scholar 

  • McEAlexander D, Obbink J (1971) Effect of chloride in solution culture on growth and chloride uptake of Sultana and Salt Creek grape vines. Aust J Exp Agric Anim Husb 11:357–361

    Article  Google Scholar 

  • Outlaw WH Jr, Manchester J (1979) Guard cell starch concentration quantitatively related to stomatal aperture. Plant Physiol 64:79–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349

    Article  CAS  PubMed  Google Scholar 

  • Parida A, Das AB, Das P (2002) NaCl stress causes changes in photosynthetic pigments, proteins, and other metabolic components in the leaves of a true mangrove, Bruguiera parviflora, in hydroponic cultures. J Plant Biol 45:28–36

    Article  CAS  Google Scholar 

  • Perez-Alfocea F, Balibrea M, Cruz AS, Estan M (1996) Agronomical and physiological characterization of salinity tolerance in a commercial tomato hybrid. Plant Soil 180:251–257

    Article  CAS  Google Scholar 

  • Romero-Aranda MR, Jurado O, Cuartero J (2006) Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status. J Plant Physiol 163:847–855

    Article  CAS  PubMed  Google Scholar 

  • Seemann JR, Critchley C (1985) Effects of salt stress on the growth, ion content, stomatal behaviour and photosynthetic capacity of a salt-sensitive species, Phaseolus vulgaris L. Planta 164:151–162

    Article  CAS  PubMed  Google Scholar 

  • Tuna AL, Kaya C, Higgs D, Murillo-Amador B, Aydemir S, Girgin AR (2008) Silicon improves salinity tolerance in wheat plants. Environ Exp Bot 62:10–16

    Article  CAS  Google Scholar 

  • Walker RR, Read PE, Walker RR, Blackmore DH (2008) Rootstock and salinity effects on rates of berry maturation, ion accumulation and colour development in Shiraz grapes. Aust J Grape Wine Res 6:227–239

    Article  Google Scholar 

  • Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313

    Article  CAS  Google Scholar 

  • Xu PL, Guo YK, Bai JG, Shang L, Wang XJ (2008) Effects of long term chilling on ultrastructure and antioxidant activity in leaves of two cucumber cultivars under low light. Physiol Plant 132:467–478

    Article  CAS  PubMed  Google Scholar 

  • Yeo A, Flowers S, Rao G, Welfare K, Senanayake N, Flowers T (1999) Silicon reduces sodium uptake in rice (Oryza sativa L.) in saline conditions and this is accounted for by a reduction in the transpirational bypass flow. Plant Cell Environ 22:559–565

    Article  CAS  Google Scholar 

  • Zheng Y, Jia A, Ning T, Xu J, Li Z, Jiang G (2008) Potassium nitrate application alleviates sodium chloride stress in winter wheat cultivars differing in salt tolerance. J Plant Physiol 165:1455–1465

    Article  CAS  PubMed  Google Scholar 

  • Zhu Z, Wei G, Li J, Qian Q, Yu J (2004) Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Sci 167:527–533

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Nature Science Foundation of Hebei Provincial of China (Grant No. C 2010001529; C 2014407013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-huai Kang.

Additional information

Communicated by L Bavaresco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, L., Kang, Wh., Qi, Yl. et al. The influence of silicon application on growth and photosynthesis response of salt stressed grapevines (Vitis vinifera L.). Acta Physiol Plant 38, 68 (2016). https://doi.org/10.1007/s11738-016-2087-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-016-2087-9

Keywords

Navigation