Skip to main content
Log in

GABA/BABA priming: a means for enhancing abiotic stress tolerance potential of plants with less energy investments on defence cache

  • Review
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Abiotic stress is one of the major factors limiting plant growth and yield globally. Though substantial progress has been made in breeding and genetic manipulation of plants to enhance abiotic stress tolerance, the task remains as a challenge even today. Investigations on the priming activity of various chemicals in plants for enhancing abiotic stress tolerance have been undertaken over the past few years. Priming with γ-amino butyric acid (GABA) and β-amino butyric acid (BABA) gains greater attention, because priming with these non-protein amino acids equips the plants to resist abiotic stresses effectively without suffering costly energy investments in operating defence mechanisms. It is well documented that the protective effect of non-protein amino acids like BABA and GABA on plants is due to a potentiation of natural defence mechanisms against abiotic stresses but at the same time not activating the complete defence arsenal before the stress exposure. The exact mode of action of priming with GABA/BABA in plants is still a puzzle, though their importance as signaling molecules during stress is undoubtful. The better understanding of molecular, physiological, and ecological aspects of GABA/BABA priming might lead to the emergence of this technique as a successful strategy for enhancing the abiotic stress(es) tolerance potential of plants in the field, without compromising much on productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AABA:

α-Amino butyric acid

ABA:

Abscisic acid

ACC:

1-Aminocyclopropane-1-carboxylic acid

BABA:

β-Amino butyric acid

GABA:

γ-Amino butyric acid

CAT:

Catalase

DHA:

Dehydroascorbate

GAD:

Glutamate decarboxylase

GPX:

Glutathione peroxidase

GR:

Glutathione reductase

IAA:

Indole acetic acid

JA:

Jasmonic acid

LEA:

Late embryogenesis-abundant protein

MDA:

Malondialdehyde

MW:

Molecular weight

NADH:

Nicotinamide adenine dinucleotide

NPAAs:

Non-protein amino acids

NADPH:

Nicotinamide adenine dinucleotide phosphate

PEG:

Polyethelyne glycol

RBPs:

RNA-binding proteins

POD:

Peroxidases

ROS:

Reactive oxygen species

SA:

Salicylic acid

SOD:

Superoxide dismutases

ψw :

Water potential

References

  • Ahmad S, Van Hulten M, Martin J, Pieterse CMJ, van Wees SCM, Ton J (2011) Genetic dissection of basal defence responsiveness in accessions of Arabidopsis thaliana. Plant Cell Environ 34:1191–1206

    Article  CAS  PubMed  Google Scholar 

  • Akram NA, Ashraf M (2013) Regulation in plant stress tolerance by a potential plant growth regulator, 5-aminolevulinic acid. J Plant Growth Regul 32:663–679

    Article  CAS  Google Scholar 

  • Amzalek E, Cohen Y (2007) Comparative efficacy of systemic acquired resistance-inducing compounds against rust infection in sunflower plants. Phytopathology 97:179–186

    Article  CAS  PubMed  Google Scholar 

  • Anosheh HP, Sadeghi H, Emam Y (2011) Chemical priming with Urea and KNO3 enhances maize hybrids (Zea mays L.) seed viability under abiotic stress. J Crop Sci Biotech 14:289–295

    Article  Google Scholar 

  • Arasimowicz-Jelonek M, Kosmala A, Janus L, Abramowski D, Floryszak-Wieczorek J (2013) The proteome response of potato leaves to priming agents and S-nitrosoglutathione. Plant Sci 198:83–90

    Article  CAS  PubMed  Google Scholar 

  • Arbona V, Manzi M, Ollas CD, Gómez-Cadenas A (2013) Metabolomics as a tool to investigate abiotic stress tolerance in plants. Int J Mol Sci 14:4885–4911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ardebili NO, Saadatmand S, Niknam V, Khavari-Nejad RA (2014) The alleviating effects of selenium and salicylic acid in salinity exposed soybean. Acta Physiol Plant 36:3199–3205

    Article  CAS  Google Scholar 

  • Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot 63:3523–3543

    Article  CAS  PubMed  Google Scholar 

  • Bai QY, Fan GJ, Gu ZX, Cao XH, Gu FR (2008) Effects of culture conditions on γ-aminobutyric acid accumulation during germination of foxtail millet (Setaria italica L.). Eur Food Res Technol 228:169–175

    Article  CAS  Google Scholar 

  • Bao H, Chen X, Lv S, Jiang P, Feng J, Fan P, Nie L, Li Y (2015) Virus-induced gene silencing reveals control of reactive oxygen species accumulation and salt tolerance in tomato by γ-aminobutyric acid metabolic pathway. Plant Cell Environ 38:600–613

    Article  CAS  PubMed  Google Scholar 

  • Barbosa JM, Singh NK, Cherry JH, Locy RD (2010) Nitrate uptake and utilization is modulated by exogenous γ-aminobutyric acid in Arabidopsis thaliana seedlings. Plant Physiol Biochem 48:443–450

    Article  CAS  PubMed  Google Scholar 

  • Baum G, Lev-Yadun S, Fridmann Y (1996) Calmodulin binding to glutamate decarboxylase is required for regulation of glutamate and GABA metabolism and normal development in plants. EMBO J 15:2988–2996

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bechtold U, Lawson T, Mejia-carranza J, Meyer RC, Brown IR, Altmann T, Ton J, Mullineaux PM (2010) Constitutive salicylic acid defences do not compromise seed yield, drought tolerance and water productivity in the Arabidopsis accession C24. Plant Cell Environ 33:1959–1973

    Article  CAS  PubMed  Google Scholar 

  • Beuve N, Rispail N, Laine P, Cliquet JB, Ourry A, Deunff EL (2004) Putative role of γ-aminobutyric acid (GABA) as a long distance signal in up-regulation of nitrate uptake in Brassica napus L. Plant Cell Environ 27:1035–1046

    Article  CAS  Google Scholar 

  • Bouche N, Fromm H (2004) GABA in plants: just a metabolite? Trends Plant Sci 9:110–115

    Article  CAS  PubMed  Google Scholar 

  • Bown AW, Shelp BJ (1997) The metabolism and functions of γ-aminobutyric acid. Plant Physiol 115:1–5

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bown AW, Mac Gregor KB, Shelp BJ (2006) Gamma aminobutyrate: defence against invertebrate pests? Trends Plant Sci 11:424–427

    Article  CAS  PubMed  Google Scholar 

  • Britkreuz KE, Shelp JB, Fischer WN, Schwacke R, Rentsch D (1999) Identification and characterization of GABA, proline and quaternary ammonium compound transporters from Arabidopsis thaliana. FEBS Lett 450:280–284

    Article  Google Scholar 

  • Cao H-H, Zhang M, Zhao H, Zhang Y, Wang X-X, Guo S-S, Zhang Z-F, Liu T-X (2014) Deciphering the mechanism of β-Aminobutyric acid-induced resistance in wheat to the grain aphid, Sitobion avenae. PLoS One 9:1–9

    Google Scholar 

  • Cohen Y (1994) 3-Aminobutyric acid induces systemic resistance against Peronospora tabacina. Physiol Mol Plant Pathol 44:273–288

    Article  CAS  Google Scholar 

  • Cohen Y, Gisi U (1994) Systemic translocation of 14C-DL-3-aminobutyric acid in tomato plants against Phytophthora infestans. Physiol Mol Plant Pathol 45:441–446

    Article  CAS  Google Scholar 

  • Cohen Y, Baider A, Gotilieb D, Rubin E (2007) Control of Bremia lectucae in field-grown Lettuce by DL-3-amino-n-butanoic acid (BABA). 3rd QLIF congress, Hohenheim, Germany, pp 20–23

  • Cohen Y, Rubin AE, Vakmb M (2011) Post infection application of DL-3-aminobutyric acid (BABA) induce multiple forms of resistance against Bremia lactucae in lettuce. Eur J Plant Pathol 130:13–27

    Article  CAS  Google Scholar 

  • Conrath U (2011) Molecular aspects of defence priming. Trends Plant Sci 16:524–531

    Article  CAS  PubMed  Google Scholar 

  • Conrath U, Pieterse CMJ, Mauch-Mani B (2002) Priming in plant–pathogen interactions. Trends Plant Sci 7:210–216

    Article  CAS  PubMed  Google Scholar 

  • Conrath U, Beckers GJM, Flors V, Garcia-Agustin P, Jakab G, Mauch F, Newman MA, Pieterse CMJ, Poinssot B, Pozo MJ, Pugin A, Schaffrath U, Ton J, Wendehenne D, Zimmerli L, Mauch-Mani B (2006) Priming: getting ready for battle. Mol Plant Microbe Interact 19:1062–1071

    Article  CAS  PubMed  Google Scholar 

  • Du YL, Wang ZY, Fan JW, Turner NC, Wang T, Li FM (2012) β-Aminobutyric acid increases abscisic acid accumulation and desiccation tolerance and decreases water use but fails to improve grain yield in two spring wheat cultivars under soil drying. J Exp Bot 63:4849–4860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Etehadnia M, Waterer D, Jong HD, Tanino KK (2008) Scion and rootstock effects on ABA-mediated plant growth regulation and salt tolerance of acclimated and unacclimated potato genotypes. J Plant Growth Regul 27:125–140

    Article  CAS  Google Scholar 

  • Flors V, Paradís M, García-Andrade J, Cerezo M, González-Bosch C, García-Agustín P (2007) A tolerant behavior in salt-sensitive tomato plants can be mimicked by chemical stimuli. Plant Signal Behav 2:50–57

    Article  PubMed  PubMed Central  Google Scholar 

  • Fujita Y, Fujita M, Shinozaki K, Yamaguchi-Shinozaki K (2011) ABA-mediated transcriptional regulation in response to osmotic stress in plants. J Plant Res 124:509–525

    Article  CAS  PubMed  Google Scholar 

  • Gamliel A, Katan J (1992) Influence of seed and root exudates on fluorescent Pseudomonas and fungi in solarized soil. Phytopathol 82:320–327

    Article  Google Scholar 

  • Gao JP, Chao DY, Lin HX (2007) Understanding abiotic stress tolerance mechanisms: recent studies on stress response in rice. J Integr Plant Biol 49:742–750

    Article  CAS  Google Scholar 

  • Gao JP, Chao DY, Lin HX (2008) Towards understanding molecular mechanisms of abiotic stress responses in rice. Rice 1:36–51

    Article  Google Scholar 

  • Goellner K, Conrath U (2008) Priming: its all the world to induced disease resistance. Eur J Plant Pathol 121:233–242

    Article  Google Scholar 

  • Heil M (2002) Ecological costs of induced resistance. Curr Opin Plant Biol 15:345–350

    Article  Google Scholar 

  • Hodge S (2010) Inhibition of Drosophila development by β-aminobutyric acid a plant defence priming compound. Dros Inf Serv 93:103–106

    Google Scholar 

  • Hodge S, Thompson GA, Powell G (2005) Application of DL-beta-aminobutyric acid (BABA) as a root drench to legumes inhibits the growth and reproduction of the pea aphid Acyrthosiphon pisum (Hemiptera: Aphididae). B Entomol Res 95:449–455

    Article  CAS  Google Scholar 

  • Hodge S, Pope TW, Holaschke M (2006) The effect of beta-aminobutyric acid on the growth of herbivorous insects feeding on Brassicaceae. Ann Appl Biol 148:223–229

    Article  CAS  Google Scholar 

  • Hodge S, Ward JL, Galster AM, Beale MH, Powell G (2011) The effects of a plant defence priming compound, β-aminobutyric acid, on multitrophic interactions with an insect herbivore and a hymenopterous parasitoid. Biocontrol 56:699–711

    Article  CAS  Google Scholar 

  • Jain M (2013) Emerging role of metabolic pathways in abiotic stress tolerance. J Plant Biochem Physiol 1:1–2

    Article  Google Scholar 

  • Jakab G, Cottier V, Toquin V, Rigoli G, Zimmerli L, Metraux JP, Mauch-Mani B (2001) β-Aminobutyric acid-induced resistance in plants. Eur J Plant Pathol 107:29–37

    Article  CAS  Google Scholar 

  • Jakab G, Ton J, Flors V, Zimmerli L, Métraux JP, Mauch-Mani B (2005) Enhancing Arabidopsis salt and drought stress tolerance by chemical priming for its abscisic acid responses. Plant Physiol 139:267–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang L, Yang RZ, Lu YF, Cao SQ, Ci LK, Zhang JJ (2012) β Aminobutyric acid mediated tobacco tolerance to potassium deficiency. Russ J Plant Physiol 59:781–787

    Article  CAS  Google Scholar 

  • Jisha KC, Puthur JT (2014a) Halopriming of seeds imparts tolerance to NaCl and PEG-induced stress in Vigna radiata (L.) Wilczek varieties. Physiol Mol Biol Plants 20:303–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jisha KC, Puthur JT (2014b) Seed halopriming outdo hydropriming in enhancing seedling vigor and osmotic stress tolerance potential of rice varieties. J Crop Sci Biotech 17:209–219

    Article  Google Scholar 

  • Jisha KC, Puthur JT (2016) Seed priming with BABA (β-amino butyric acid): a cost-effective method of abiotic stress tolerance in Vigna radiata (L.) Wilczek. Protoplasma 253:227–289

    Article  Google Scholar 

  • Jisha KC, Vijayakumari K, Puthur JT (2013) Seed priming for abiotic stress: an overview. Acta Physiol Plant 35:1381–1396

    Article  Google Scholar 

  • Kamboj A, Ziemann M, Bhave M (2015) Identification of salt-tolerant barley varieties by a consolidated physiological and molecular approach. Acta Physiol Plant 37:1716

    Article  Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt and freezing tolerance by gene transfer of a single stress inducible transcription factor. Nat Biotechnol 17:287–291

    Article  CAS  PubMed  Google Scholar 

  • Kathiresan A, Tung P, Chinnappa CC, Reid DM (1997) γ- aminobutyric acid stimulates ethylene biosynthesis in sunflower. Plant Physiol 115:129–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kathiresan A, Miranda J, Chinnappa CC, Reid DM (1998) γ-aminobutyric acid promotes stem elongation in Stellaria longipes: the role of ethylene. Plant Growth Regul 26:131–137

    Article  CAS  Google Scholar 

  • Kinnersley AM (1998) Bioactivity of AuxiGro™ plant metabolic primer, a formulation containing GABA and glutamic acid. In: Proceeding of 25th Annual Meeting, Plant Growth Regulation Society of America, pp 89–94

  • Kinnersley AM, Lin F (2000) Recepter modifiers indicate that GABA is a potential modulator of ion transport in plants. Plant Growth Regul 32:65–76

    Article  CAS  Google Scholar 

  • Kinnersley AM, Turano FJ (2000) Gamma aminobutyric acid (GABA) and plant responses to stress. Crit Rev Plant Sci 19:479–509

    Article  CAS  Google Scholar 

  • Kocsis M, Jakab G (2008) Analysis of BABA (β-aminobutyric acid)-induced female sterility in Arabidopsis flowers. Acta Biol Szeged 52:247–249

    Google Scholar 

  • Krishnan S, Merewitz EB (2015) Drought stress and trinexapac-ethyl modify phytohormone content within Kentucky bluegrass leaves. J Plant Growth Regul 34:1–12

    Article  CAS  Google Scholar 

  • Krishnan S, Laskowski K, Shukla V, Merewitz EB (2013) Mitigation of drought stress damage by exogenous application of a non-protein amino Acid γ–aminobutyric acid on perennial ryegrass. J Am Soc Hort Sci 138:358–366

    Google Scholar 

  • Lancien M, Roberts MR (2006) Regulation of Arabidopsis thaliana 14-3-3 gene expression by γ-aminobutyric acid. Plant Cell Environ 29:1430–1436

    Article  CAS  PubMed  Google Scholar 

  • Macarisin D, Wisniewski ME, Bassett C, Thannhauser T (2009) Proteomic analysis of β-aminobutyric acid priming and abscisic acid–induction of drought resistance in crabapple (Malus pumila): effect on general metabolism, the phenyl propanoid pathway and cell wall enzymes. Plant Cell Environ 32:1612–1631

    Article  CAS  Google Scholar 

  • Malekzadeh P, Khara J, Heidari R (2012) Effect of exogenous gama-aminobutyric acid on physiological tolerance of wheat seedlings exposed to chilling stress. Iran J Plant Physiol 3:611–617

    Google Scholar 

  • Malekzadeh P, Khara J, Heydari R (2014) Alleviating effects of exogenous gamma-aminobutyric acid on tomato seedling under chilling stress. Physiol Mol Biol Plants 20:133–137

    Article  CAS  PubMed  Google Scholar 

  • Meyer A, Eskandari S, Grallath S, Rentsch D (2006) AtGAT1, a high affinity transporter for γ-aminobutyric acid in Arabidopsis thaliana. J Biol Chem 281:7197–7204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mody I, De Koninck Y, Otis TS, Soltesz I (1994) Bridging the cleft at GABA synapses in the brain. Trends Neurosci 17:517–525

    Article  CAS  PubMed  Google Scholar 

  • Nayyar H, Kaur R, Kaur S, Singh R (2014) γ-Aminobutyric acid (GABA) imparts partial protection from heat stress injury to rice seedlings by improving leaf turgor and upregulating osmoprotectants and antioxidants. J Plant Growth Regul 33:408–419

    Article  CAS  Google Scholar 

  • Pastor V, Luna E, Mauch-Mani B, Ton J, Flors V (2013) Primed plants do not forget. Environ Exp Bot 94:46–56

    Article  CAS  Google Scholar 

  • Pastor V, Balmer A, Gamir J, Flors V, Mauch-Mani B (2014) Preparing to fight back: generation and storage of priming compounds. Front Sci 5:1–12

    CAS  Google Scholar 

  • Quero A, Fliniaux O, Elboutachfaiti R, Petit E, Guillot X, Hawkins S, Courtois J, Mesnard F (2015) β-Aminobutyric acid increases drought tolerance and reorganizes solute content and water homeostasis in flax (Linum usitatissimum). Metabolomics 11:1363–1375

    Article  CAS  Google Scholar 

  • Rajaei P, Mohamadi (2013) Effect of beta-aminobutyric acid (BABA) on enzymatic and non-enzymatic antioxidants of Brassica napus L. under drought stress. Int J Biosci 3:41–47

    Article  CAS  Google Scholar 

  • Renault H, Roussel V, El Amrani A, Arzel M, Renault D, Bouchereau A (2010) The Arabidopsis pop2-1 mutant reveals the involvement of GABA transaminase in salt stress tolerance. BMC Plant Biol 10:1–16

    Article  Google Scholar 

  • Roberts MR (2007) Does GABA act as a signal in plants? Plant Signal Behav 2:408–409

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodziewicz P, Swarcewicz B, Chmielewska K, Wojakowska A, Stobiecki M (2014) Influence of abiotic stresses on plant proteome and metabolom changes. Acta Physiol Plant 36:1–19

    Article  CAS  Google Scholar 

  • Schulenburg H, Kurtz J, Moret Y, Siva-Jothy MT (2009) Introduction ecological immunology. Phil Trans R Soc B 364:3–14

    Article  PubMed  Google Scholar 

  • Schwacke R, Grallath S, Breitkreuz KE, Stransky E, Stransky H, Frommer WB, Rentsch D (1999) LeProT1, a transporter for proline, glycine betaine, and γ-amino butyric acid in tomato pollen. Plant Cell 11:377–391

    CAS  PubMed  PubMed Central  Google Scholar 

  • Serraj RR, Shelp BJ, Sinclair (1998) TR Accumulation of γ-aminobutyric acid in nodulated soyabean in response to drought stress. Physiol Plant 102:79–86

    Article  CAS  Google Scholar 

  • Shailasree S, Sarosh BR, Vasanthi NS, Shetty HS (2001) Seed treatment with β-aminobutyric acid protect Pennisetum glaucum systemically from Sclerospora graminicola. Pest Manag Sci 57:721–728

    Article  CAS  PubMed  Google Scholar 

  • Shakirova FM, Sakhabutdinova AR, Bezrukova MV, Fatkhutdinova RA, Fatkhutdinova DR (2003) Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Sci 164:317–322

    Article  CAS  Google Scholar 

  • Shang H, Cao S, Yang Z, Cai Y, Zheng Y (2011) Effect of exogenous γ-aminobutyric acid treatment on proline accumulation and chilling injury in peach fruit after long-term cold storage. J AgricFood Chem 59:1264–1268

    Article  CAS  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot. doi:10.1155/2012/217037

    Google Scholar 

  • Shelp BJ, Bown AW, McLean MD (1999) Metabolisam and functions of gamma-aminobutyric acid. Trends Plant Sci 4:447–451

    Article  Google Scholar 

  • Shi SQ, Shi Z, Jiang ZP, Qi LW, Sun XM, Li CX, Liu JF, Xiao WF, Zhang SG (2010) Effects of exogenous GABA on gene expression of Caragana intermedia roots under NaCl stress: regulatory roles for H2O2 and ethylene production. Plant Cell Environ 33:149–162

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227

    Article  CAS  PubMed  Google Scholar 

  • Siegrist J, Orober M, Buchenauer H (2000) β-aminobutyric acid mediated enhancement of resistance in tobacco to tobacco mosaic virus depends on the accumulation of salicylic acid. Physiol Mol Plant Pathol 56:5–106

    Article  Google Scholar 

  • Singh P, Wu CC, Zimmerli L (2010) Beta-aminobutyric acid priming by stress imprinting. Plant Signal Behav 5:878–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slaughter A, Daniel X, Flors V, Luna E, Hohn B, Mauch-Mani B (2012) Descendants of primed Arabidopsis plants exhibit resistance to biotic stress. Plant Physiol 158:835–843

    Article  CAS  PubMed  Google Scholar 

  • Song H, Wang XX, Wang H, Taoa YH (2010) Exogenous γ-aminobutyric acid alleviates oxidative damage caused by aluminium and proton stresses on barley seedlings. J Sci Food Agric 90:1410–1416

    Article  CAS  PubMed  Google Scholar 

  • Sos-Hegedus A, Juhasz Z, Poor P, Kondrak M, Antal F, Tari I, Mauch-Mani B, Banfalvi Z (2014) Soil drench treatment with ß-aminobutyric acid increases drought tolerance of potato. PLoS One. doi:10.1371/journal.pone.0114297

    PubMed  PubMed Central  Google Scholar 

  • Sripinyowanich S, Klomsakul P, Boonburapong B, Bangyeekhun T, Asami T, Gu H, Buaboocha T, Chadchawan S (2013) Exogenous ABA induces salt tolerance in indica rice (Oryza sativa L.): the role of OsP5CS1 and OsP5CR gene expression during salt stress. Environ Exp Bot 86:94–105

    Article  CAS  Google Scholar 

  • Taiz L, Zeiger E (2002) Plant physiology, 3rd edn. Sinauer Associates, USA, pp 591–592

    Google Scholar 

  • Tian XL, Wu XL, Li Y, Zhang SQ (2005) The effect of gamma-aminobutyric acid in superoxide dismutase, peroxidase and catalase activity response to salt stress in maize seedling. Acta Biol Exp Sin 38:75–79

    CAS  Google Scholar 

  • Ton J, Jakab G, Toquin V, Flors V, Iavicoli A, Maeder MN, Metraux JP, Mauch-Mani B (2005) Dissecting the β-aminobutyric acid–induced priming phenomenon in Arabidopsis. Plant Cell 17:987–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ton J, van der Ent S, Van Hulten M, Pozo M, van Oosten V, van Loon LC, Mauch-Mani B, Turlings TCJ, Pieterse CMJ (2009) Priming as a mechanism behind induced resistance against pathogens, insects and abiotic stress. IOBC/wprs Bull 44:3–13

    Google Scholar 

  • Tworkoski T, Wisniewski M, Artlip T (2011) Application of BABA and s-ABA for drought resistance in apple. J App Hortic 13:85–90

    Google Scholar 

  • Van Hulten M, Pelser M, van Loon LC, Pieterse CMJ, Ton J (2006) Costs and benefits of priming for defence in Arabidopsis. Proc Natl Acad Sci USA 103:602–5607

    Article  Google Scholar 

  • Vijayakumari K, Puthur JT (2016) γ-Aminobutyric acid (GABA) priming enhances the osmotic stress tolerance in Piper nigrum Linn. plants subjected to PEG-induced stress. Plant Growth Regul 78:57–67

    Article  CAS  Google Scholar 

  • Vranova V, Rejsek K, Skene KR, Formanekv P (2011) Non-protein amino acids: plant, soil and ecosystem interactions. Plant Soil 342:31–48

    Article  CAS  Google Scholar 

  • Vuleta A, Jovanovic´ SM, Tucic B (2015) How do plants cope with oxidative stress in nature? A study on the dwarf bearded iris (Iris pumila). Acta Physiol Plant 37:1711

    Article  Google Scholar 

  • Wang WX, Vinocur B, Altman A (2003) Plant responses to drought, salinity, and extreme temperatures; towards engineering for stress tolerance. Planta 218:1–4

    Article  CAS  PubMed  Google Scholar 

  • Wen CP, Singh P, Zimmerli L (2013) Priming of the arabidopsis pattern-triggered immunity response upon infection by necrotrophic pectobacterium carotovorum bacteria. Mol plant pathol 14:58–70

    Article  Google Scholar 

  • Wu CC, Singh P, Chen M, Zimmerli L (2010) l-Glutamine inhibits β-aminobutyric acid-induced stress resistance and priming in Arabidopsis. J Exp Bot 61:995–1002

    Article  CAS  PubMed  Google Scholar 

  • Yang A, Cao S, Yang Z, Cai Y, Zheng Y (2011) γ-Aminobutyric acid treatment reduces chilling injury and activates the defence response of peach fruit. Food Chem 129:1619–1622

    Article  CAS  Google Scholar 

  • Zimmerli L, Jakab G, Metraux JP, Mauch-Mani B (2000) Potentiation of pathogen-specific defence mechanisms in Arabidopsis by β-aminobutyric acid. Proc Natl Acad Sci USA 97:12920–12925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmerli L, Hou BH, Tsai CH, Jakab G, Mauch-Mani B, Somerville S (2007) The xenobiotic β-aminobutyric acid enhances Arabidopsis thermotolerance. Plant J 53:144–156

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

JTP would like to acknowledge the funding received from University Grants Commission (India) (39-367/2010(SR) and Kerala State Council for Science, Technology and Environment (KSCSTE), Govt. of Kerala (India) (011/SRSLS/2010/CSTE) and VK acknowledges for the research fellowship provided by KSCSTE. The authors acknowledge Dr. Nabeesa Salim, Rtd. Professor (Botany), University of Calicut, for her meaningful suggestions during the revision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jos T. Puthur.

Additional information

Communicated by AK Kononowicz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijayakumari, K., Jisha, K.C. & Puthur, J.T. GABA/BABA priming: a means for enhancing abiotic stress tolerance potential of plants with less energy investments on defence cache. Acta Physiol Plant 38, 230 (2016). https://doi.org/10.1007/s11738-016-2254-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-016-2254-z

Keywords

Navigation