Skip to main content

Advertisement

Log in

The effects of magnetic treatment of irrigation water on seedling growth, photosynthetic capacity and nutrient contents of Populus × euramericana ‘Neva’ under NaCl stress

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The use of saline water in irrigation is cause for concern due to the reduced availability of fresh water resources for agroforestry in some regions; however, salinity can negatively affect plant populations, such as Populus. Here, magnetic techniques were employed to investigate their effects on improving salinity tolerance in Populus. Irrigation experiments were performed with Populus applying magnetized water (MW) and non-magnetized water (NMW), and seedling growth and development in 1-year-old potted seedlings of Populus × euramericana ‘Neva’ were evaluated under saline conditions. A magnetic treatment device with a low-intensity magnetic field was used for the management of irrigation water. Two average salinity levels, 0 and 4.0 g L−1 of NaCl, were used with MW and NMW, yielding four treatments of irrigation water. The experiments were performed according to a single-factor randomized block design. Seedling growth; the biomass of leaves, roots and stems; photosynthetic parameters and nutrient contents were measured. The results showed that, compared with the non-magnetic treatment (NMT), magnetic treatment (MT) led to improvements in seedling height, basal diameter, leaf area and biomass of leaves and roots (but not stem biomass). Net photosynthetic rate, stomatal conductance, intercellular CO2 concentration and water use efficiency were increased in MT, whereas both transpiration rate and stomatal limiting value were decreased in MT compared with those in NMT. In addition, MT promoted root development, as evidenced by improvements in the length, surface area, mean diameter, volume and tips of the roots. The microelement contents analyses indicated that MT led to higher contents of Fe, Zn and Cu in leaves and roots and a lower content of Mn. MT led to increased contents of C and P and an increased C/N ratio in leaves but a decreased N content; in the roots, the C content and the ratios of C/N and C/P were increased. These results indicated that irrigation with MW appeared to promote seedling growth, root development, photosynthesis and mineral nutrient contents. The properties of saline water were improved by MT, indicating that MT-treated saline water can be used for irrigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Download references

Acknowledgements

The authors are grateful for funding provided by the National Program of the International Introduction of Advanced Science and Technology in Forestry of China (948 Program, Grant no. 2011-4-60) and the Agricultural Major Application Technology Innovation Program of Shandong Province (Financial and Agricultural Indicators, 2016, No. 36).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengyun Ma.

Additional information

Communicated by M. Horbowicz.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Zhu, H., Meng, S. et al. The effects of magnetic treatment of irrigation water on seedling growth, photosynthetic capacity and nutrient contents of Populus × euramericana ‘Neva’ under NaCl stress. Acta Physiol Plant 41, 11 (2019). https://doi.org/10.1007/s11738-018-2798-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-018-2798-1

Keywords

Navigation