Skip to main content
Log in

Phenotypic characterization of a rice mutant Oryza sativa extraordinary glume 1 (Oseg 1) and its genetic analysis

  • Published:
Journal of Shanghai University (English Edition)

Abstract

A rice mutant with Japonica 9522 cultivar background Oryza sativa extraordinary glume 1 (Oseg 1) was identified from the M 2 mutant pool mutagenized by 60Co γ-ray. Compared with wild type plants, Oseg 1 developed longer empty glumes and rudimentary glumes. In some Oseg 1 mutants, the number of stamens of flowers was reduced and leaf-like lodicules occurred, and excessive lemma/palea-like organ could be observed in some mutant spikelets. This indicated that OsEG1 could regulate the edevelopment of rudimentary glumes, empty glumes, lemma/palea, lodicules, and stamens. Genetic analysis indicated that Oseg 1 came from a single recessive genetic locus. To clone OsEG1 gene, F 2 population was constructed by a cross between Oseg 1 (Japonica) and Guangluai4 (Indica). Using map-based cloning approach, OsEG1 was mapped on chromosome 4, between INDEL marker OS407 and WHM0466 with genetic distance of 2.0 cm and 1.0 cm, respectively. These results are useful for further cloning and functional analysis of the OsEG1 gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Coen E S, Meyerowitz E M. The war of the whorls: genetic interactions controlling flower development [J]. Nature, 1991, 353(6339): 31–37.

    Article  CAS  Google Scholar 

  2. Mizukami Y, Ma H. Ectopic expression of the floral homeotic gene AGAMOUS in transgenic Arabidopsis plants alters floral organ identity [J]. Cell, 1992, 71(1): 119–131.

    Article  CAS  Google Scholar 

  3. Weigel D, Meyerowitz E M. The ABCs of floral homeotic genes [J]. Cell, 1994, 78(2): 203–209.

    Article  CAS  Google Scholar 

  4. Kyozuka J, Kobayashi T, Morita M, Shimamoto K. Spatially and temporally regulated expression of rice MADS box genes with similarity to Arabidopsis class A, B and C genes [J]. Plant and Cell Physiology, 2000, 41(6): 710–718.

    CAS  Google Scholar 

  5. Ferrario S, Immink R G, Angenent G C. Conservation and diversity in flower land [J]. Current Opinion in Plant Biology, 2004, 7(1): 84–91.

    Article  Google Scholar 

  6. Irish V F, Litt A. Flower development and evolution: gene duplication, diversification and redeployment [J]. Current Opinion in Genetics Development, 2005, 15(4): 454–460.

    Article  CAS  Google Scholar 

  7. Lohmann J U, Weigel D. Building beauty: the genetic control of floral pattering [J]. Developmental Cell, 2002, 2(2): 135–142.

    Article  CAS  Google Scholar 

  8. Colombo L, Frankeln J, Koetje E, van Went J, Dons H J, Angenent G C, van Junen A J. The petunia MADS box gene FBP11 determines ovule identity [J]. Plant Cell, 1995, 7(11): 1859–1868.

    Article  CAS  Google Scholar 

  9. Alvarez J, Smyth D R. CRABS CLAW and SPATULA, two Arabidopsis genes that control carpel development in parallel with AGAMOUS [J]. Development, 1999, 126(11): 2377–2386.

    CAS  Google Scholar 

  10. Yamaguchi T, Nagasawa N, Kawasaki S. The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa [J]. Plant Cell, 2004, 16(2): 500–509.

    Article  CAS  Google Scholar 

  11. Pelaz S, Ditta G S, Baumann E, Yanofsky M F. B and C floral organ identity functions require SEPALLATA MADS-box genes [J]. Nature, 2000, 405(6783): 200–203.

    Article  CAS  Google Scholar 

  12. Theissen G, Saedler H. Plant biology. Floral quartets [J]. Nature, 2001, 409(6819): 469–471.

    Article  CAS  Google Scholar 

  13. Hoshikawa Y, Ichii S. Structures and functions of steroid hormone response elements [J]. Nippon Rinsho, 1989, 47(10): 2324–2329.

    CAS  Google Scholar 

  14. Komatsu M, Chujo A, Nagato Y, Shimamoto K, Kyozuka J. FRIZZY PANICLE is required to prevent the formation of axillary meristems and to establish floral meristem identity in rice spikelets [J]. Development, 2003, 130(16): 3841–3850.

    Article  CAS  Google Scholar 

  15. Kang H G, Jeon J S, Lee S, An G. Identification of class B and class C floral organ identity genes from rice plants [J]. Plant Molecular Biology, 1998, 38(6): 1021–1029.

    Article  CAS  Google Scholar 

  16. Nagasawa N, Miyoshi M, Sano Y, Satoh H, Hirano H, Sakai H, Nagato Y. SUPERWOMAN1 and DROOPING LEAF genes control floral organ identity in rice [J]. Development, 2003, 130(4): 705–718.

    Article  CAS  Google Scholar 

  17. Schmidt R J, Ambrose B A. The blooming of grass flower development [J]. Current Opinion in Plant Biology, 1998, 1(1): 60–67.

    Article  CAS  Google Scholar 

  18. Prasad K, Sriram P, Kumar C S, Kushalappa K, Vijayraghavan U. Ectopic expression of rice OsMADS1 reveals a role in specifying the lemma and palea, grass floral organs analogous to sepals [J]. Development Genes and Evolution, 2001, 211(6): 281–290.

    Article  CAS  Google Scholar 

  19. Luo Q, Zhou K, Zhao X, Zeng Q, Xia H, Zhai H, Zhai W, Xu J, Wu X, Yang H, Zhu L. Identification and fine mapping of a mutant gene for palealess spikelet in rice [J]. Planta, 2005, 221(2): 222–230.

    Article  CAS  Google Scholar 

  20. Prasad K, Parameswaran S, Vijayraghavan U. OsMADS1, a rice MADS-box factor, controls differentiation of specific cell types in the lemma and palea and is an early-acting regulator of inner floral organs [J]. The Plant Journal, 2005, 43(6): 915–928.

    Article  CAS  Google Scholar 

  21. Agrawal G K, Abe K, Yamazaki M, Miyao A, Hirochika H. Conservation of the E-function for floral organ identity in rice revealed by the analysis of tissue culture-induced loss-of-function mutants of the OsMADS1 gene [J]. Plant Molecular Biology, 2005, 59(1): 125–135.

    Article  CAS  Google Scholar 

  22. Liu Hai-sheng, Chu Huang-wei, Li Hui, Wang Hong-mei, Wei Jia-li, Li Na, Ding Shu-yan, Huang Hai, Ma Hong, Huang Chao-feng, Luo Da, Yuang Zheng, Liu Jia-hua, Zhang Da-bing. Genetic analysis and mapping of rice (Oryza sativa L.) male-sterile (OsMS-L) mutant [J]. Chinese Science Bulletin, 2005, 50: 122–125 (in Chinese).

    Article  CAS  Google Scholar 

  23. Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA [J]. Nucleic Acids Research, 1980, 8(19): 4321–4325.

    Article  CAS  Google Scholar 

  24. Qian Qian, Li Yun-hai, Zeng Da-li, Teng Sheng, Wang Zheng-ke, Li Xue-yong, Dong Zhi-gang, Dai Ning, Sun Lei, Li Jia-yang. Isolation and genetic characterization of a fragile plant mutant in rice (Oryza sativa L.) [J]. Chinese Science Bulletin, 2001, 46: 2082–2085 (in Chinese).

    Article  CAS  Google Scholar 

  25. Goff S A, Ricke D, Lan T H, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D. A draft sequence of the rice genome (Oryza sativa L. ssp. Japonica) [J]. Science, 2002, 296(5565): 92–100.

    Article  CAS  Google Scholar 

  26. Yu J, Hu S, Wang J, Li W, Li L, Han Y J, Geng J N, Cong L J, Tong W, Ye C. A draft sequence of the rice genome (Oryza sativa L. ssp. Indica) [J]. Science, 2002, 296(5565): 79–92.

    Article  CAS  Google Scholar 

  27. Akagi H, Yokozeki Y, Inagaki A, Fujimura T. Micron, a microsatellite-targeting transposable element in the rice genome [J]. Molecular Genetics and Genomics, 2001, 266(3): 471–480.

    Article  CAS  Google Scholar 

  28. Xu Shao-bin, Tao Yu-fen, Yang Zhao-qing, Chu Jia-you. A simple and rapid methods used for silver staining and gel preservation [J]. Yi Chuan, 2002, 24(3): 335–336 (in Chinese).

    CAS  Google Scholar 

  29. Liu Ren-hu, Meng Jin-ling. MapDraw: a microsoft excel macro for drawing genetic linkage maps based on given genetic linkage data [J]. Yi Chuan, 2003, 25(3): 317–321 (in Chinese).

    Google Scholar 

  30. Moore G, Devos K M, Wang Z, Gale M D. Cereal genome evolution. Grasses, line up and form a circle [J]. Current Biology, 1995, 5(7): 737–739.

    Article  CAS  Google Scholar 

  31. F F, G M, L M MADS-box genes controlling flower development in rice [J]. Plant Biology, 2003, 5: 16–22.

    Article  Google Scholar 

  32. Wolfe K H, Gouy M, Yang Y W, Sharp P M, Li W H. Date of the monocot-dicot divergence estimated from chloroplast DNA sequence data [J]. Proceedings of the National Academy of Sciences USA, 1989, 86(16): 6201–6205.

    Article  CAS  Google Scholar 

  33. Prasad K, Vijayraghavan U. Double-stranded RNA interference of a rice PI/GLO paralog, OsMADS2, uncovers its second-whorl-specific function in floral organ patterning [J]. Genetics, 2003, 165(4): 2301–2305.

    CAS  Google Scholar 

  34. Vandenbussche M, Zethof J, Souer E, Koes R, Tornielli G B, Pezzotti M, Ferrario S, Greats T, Angenent G C. Toward the analysis of the petunia MADS box gene family by reverse and forward transposon insertion mutagenesis approaches: B, C, and D floral organ identity functions require SEPALLATA-like MADS box genes in petunia [J]. Plant Cell, 2003, 15(11): 2680–2693.

    Article  CAS  Google Scholar 

  35. Honma T, Goto K. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs [J]. Nature, 2001, 409(6819): 525–529.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Ke-lan  (雍克岚).

Additional information

Project supported by the National Key Basic Research Development Program of the Ministry of Science and Technology of China (Grant Nos.2001CB109002, 2005CB120802), the National High-Technology Research and Development Program of China (Grant No.2005AA2710330), the Science Foundation of Shanghai Municipal Commission of Science and Technology (Grant Nos.03JC14061, 03DJ14016), the Program for New Century Excellent Talents in University (Grant No.NCET-04-0403), and the Shuguang Plan of Shanghai Education Development Foundation (Grant No.04SG15)

About this article

Cite this article

Wang, Hm., Chu, Hw., Liu, Hs. et al. Phenotypic characterization of a rice mutant Oryza sativa extraordinary glume 1 (Oseg 1) and its genetic analysis. J. Shanghai Univ. 11, 619–624 (2007). https://doi.org/10.1007/s11741-007-0618-1

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11741-007-0618-1

Keywords

Navigation