Skip to main content
Log in

Some recent theory for autoregressive count time series

  • Invited Paper
  • Published:
TEST Aims and scope Submit manuscript

Abstract

In this paper an overview is given over recent theoretical developments in autoregressive count time series. The focus is on generalized autoregressive models where the autoregressive structure is incorporated via a link function. Starting from an ordinary autoregressive model the difficulties in extending standard theory of statistical inference to count time series are highlighted. Special attention is given to the issues of ergodicity and asymptotic theory of estimation. Two main approaches are mentioned, a perturbation approach and the use of a weak dependence concept. The main emphasis is on the former. Linear as well as log-linear and nonlinear models are treated. It is argued that the developed theory forms a necessary basis for modelling and application of these count time series. The setting of the paper is one of simple models and conditional distributions of Poisson type. But it is claimed that the framework is general enough to handle many extensions with an accompanying flexibility in applications of these models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrews DWK (1984) Non-strong mixing autoregressive processes. Journal of Applied Probability 930–934

  • Berkes I, Horváth L, Kokoszka P (2003) GARCH processes: structure and estimation. Bernoulli 9(2):201–227

    Article  MathSciNet  MATH  Google Scholar 

  • Bickel PJ, Bühlmann P (1999) A new mixing notion and functional central limit theorems for a sieve bootstrap in time series. Bernoulli 5(3):413–446

    Article  MathSciNet  MATH  Google Scholar 

  • Brockwell PJ, Davis RA (1987) Time series: theory and methods. Springer, Berlin

    MATH  Google Scholar 

  • Cox DR (1981) Statistical analysis of time series: Some recent developments [with discussion and reply]. Scand J Stat 8(2):93–115

    MATH  Google Scholar 

  • Cui Y, Lund R (2009) A new look at time series of counts. Biometrika 96(4):781–792

    Article  MathSciNet  MATH  Google Scholar 

  • Czado C, Gneiting T, Held L (2009) Predictive model assessment for count data. Biometrics 65(4):1254–1261

    Article  MathSciNet  MATH  Google Scholar 

  • Davis RA, Dunsmuir W, Streett SB (2003) Observation-driven models for Poisson counts. Biometrika 90(4):777–790

    Article  MathSciNet  Google Scholar 

  • Dedecker J, Prieur C (2005) New dependence coefficients. Examples and applications to statistics. Probab Theory Relat Fields 132(2):203–236

    Article  MathSciNet  MATH  Google Scholar 

  • Dedecker J, Doukhan P, Lang G, León JR, Louhichi S, Prieur C (2007) Weak dependence: with examples and applications. Springer, Berlin

    MATH  Google Scholar 

  • Doukhan P, Louhichi S (1999) A new weak dependence condition and applications to moment inequalities. Stoch Process Appl 84(2):313–342

    Article  MathSciNet  MATH  Google Scholar 

  • Doukhan P, Neumann MH (2008) The notion of ψ-weak dependence and its applications to bootstrapping time series. Probab Surv 5:146–168

    Article  MathSciNet  MATH  Google Scholar 

  • Doukhan P, Fokianos K, Tjøstheim D (2012) On weak dependence conditions for Poisson autoregression. Stat Probab Lett 82:942–948

    Article  MATH  Google Scholar 

  • Drost FC, Van den Akker R, Werker BJM (2008) Note on integer-valued bilinear time series models. Stat Probab Lett 78(8):992–996

    Article  MATH  Google Scholar 

  • Drost FC, Akker R, Werker BJM (2009) Efficient estimation of auto-regression parameters and innovation distributions for semiparametric integer-valued AR (p) models. J R Stat Soc, Ser B, Methodol 71(2):467–485

    Article  Google Scholar 

  • Fan J, Yao Q (2005) Nonlinear time series: nonparametric and parametric methods. Springer, Berlin

    Google Scholar 

  • Ferland R, Latour A, Oraichi D (2006) Integer-valued GARCH process. J Time Ser Anal 27(6):923–942

    Article  MathSciNet  MATH  Google Scholar 

  • Fokianos K (2012) Count time series models. In: Subba Rao T, Subba Rao S, Rao CR (eds) Handbook in statistics. Time series-methods and applications, vol 30, pp 315–348. Elsevier, Amsterdam

    Google Scholar 

  • Fokianos K, Fried R (2010) Interventions in INGARCH processes. J Time Ser Anal 31(3):210–225

    Article  MathSciNet  MATH  Google Scholar 

  • Fokianos K, Kedem B (2004) Partial likelihood inference for time series following generalized linear models. J Time Ser Anal 25(2):173–197

    Article  MathSciNet  MATH  Google Scholar 

  • Fokianos K, Tjøstheim D (2011) Log-linear Poisson autoregression. J Multivar Anal 102:563–578

    Article  MATH  Google Scholar 

  • Fokianos K, Tjøstheim D (2012) Nonlinear Poisson autoregression. Ann. Inst. Stat. Math. (to appear)

  • Fokianos K, Rahbek A, Tjøstheim D (2009a) Poisson autoregression. Complete version available at www.amstat.org/publications/jasa/

  • Fokianos K, Rahbek A, Tjøstheim D (2009b) Poisson autoregression. J Am Stat Assoc 104(488):1430–1439

    Article  MATH  Google Scholar 

  • Fokianos K, Støve B, Tjøstheim D (2012) Approximate multivariate Poisson autoregression. Work in progress

  • Francq C, Zakoïan JM (2004) Maximum likelihood estimation of pure GARCH and ARMA-GARCH processes. Bernoulli 10(4):605–637

    Article  MathSciNet  MATH  Google Scholar 

  • Franke J (2010) Weak dependence of functional INGARCH processes. Technical report, Working paper, University of Kaiserslautern

  • Heinen A (2003) Modelling time series count data: an autoregressive conditional Poisson model. In: CORE discussion Paper 2003062

    Google Scholar 

  • Heinen A, Rengifo E (2007) Multivariate autoregressive modeling of time series count data using copulas. J Empir Finance 14(4):564–583

    Article  Google Scholar 

  • Jensen ST, Rahbek A (2004) Asymptotic inference for nonstationary GARCH. Econom Theory 20(06):1203–1226

    Article  MathSciNet  MATH  Google Scholar 

  • Johnson N, Kotz S, Balakrishnan N (1997) Discrete multivariate distributions. Wiley, New York

    MATH  Google Scholar 

  • Jung RC, Kukuk M, Liesenfeld R (2006) Time series of count data: modeling, estimation and diagnostics. Comput Stat Data Anal 51(4):2350–2364

    Article  MathSciNet  MATH  Google Scholar 

  • Jung RC, Liesenfeld R, Richard JF (2011) Dynamic factor models for multivariate count data: an application to stock-market trading activity. J Bus Econ Stat 29(1):73–85

    Article  MathSciNet  MATH  Google Scholar 

  • Kedem B, Fokianos K (2002) Regression models for time series analysis. WileyNew York

    Book  MATH  Google Scholar 

  • Letac G (1986) A contraction principle for certain Markov chains and its applications. In: Proceedings of the AMS-IMS-SIAM joint summer research conference held on June 17–23, 1984. Random matrices and their applications, vol 50, pp 263–276. American Mathematical Society, Providence

    Google Scholar 

  • Li W (1994) Time series models based on generalized linear models: some further results. Biometrics 50(2):506–511

    Article  MATH  Google Scholar 

  • McCabe BPM, Martin GM, Harris D (2011) Optimal probabilistic forecasts for counts. J R Stat Soc, Ser B, Methodol 73:253–272

    Article  MathSciNet  Google Scholar 

  • McCullagh P, Nelder JA (1989) Generalized linear models. Chapman Hall, London

    MATH  Google Scholar 

  • McKenzie E (2003) Discrete variate time series. In: Handbook of statistics, vol 21, pp 573–606. Elsevier, Amsterdam

    Google Scholar 

  • Meitz M, Saikkonen P (2008) Ergodicity, mixing, and existence of moments of a class of Markov models with applications to GARCH and ACD models. Econom Theory 24(05):1291–1320

    Article  MathSciNet  MATH  Google Scholar 

  • Meyn SP, Tweedie RL (1993) Markov chains and stochastic stability. Springer, London

    Book  MATH  Google Scholar 

  • Neumann MH (2011) Absolute regularity and ergodicity of Poisson count processes. Bernoulli 17:1268–1284

    Article  MathSciNet  MATH  Google Scholar 

  • Pham DT (1985) Some mixing properties of time series models. Stoch Process Appl 19:279–303

    Article  MathSciNet  Google Scholar 

  • Rydberg TH, Shephard N (2000) A modelling framework for the prices and times of trades made on the New York stock exchange. Nonlinear and Nonstationary Signal Processing 217–246

  • Sandmann G, Koopman SJ (1998) Estimation of stochastic volatility models via Monte Carlo maximum likelihood. J Econom 87(2):271–301

    Article  MathSciNet  MATH  Google Scholar 

  • Steutel F, Van Harn K (1979) Discrete analogues of self-decomposability and stability. Ann Probab 7(5):893–899

    Article  MathSciNet  MATH  Google Scholar 

  • Straumann D, Mikosch T (2006) Quasi-maximum-likelihood estimation in conditionally heteroscedastic time series: a stochastic recurrence equations approach. Ann Stat 34(5):2449–2495

    Article  MathSciNet  MATH  Google Scholar 

  • Streett S (2000) Some observation driven models for time series of counts. PhD thesis, Colorado State University, Department of Statistics

  • Teräsvirta T, Tjøstheim D, Granger CWJ (2010) Modelling nonlinear economic time series. Oxford University Press, Oxford

    Book  Google Scholar 

  • Tjøstheim D (1990) Non-linear time series and Markov chains. Advances in Applied Probability 587–611

  • Tong H (1993) Non-linear time series: a dynamical system approach. Oxford University Press, Oxford

    Google Scholar 

  • Wang C, Li WK (2011) On the autopersistence functions and the autopersistence graphs of binary autoregressive time series. J Time Ser Anal 32:639–646

    Article  Google Scholar 

  • WeißCH (2008) Thinning operations for modeling time series of counts survey. AStA Adv Stat Anal 92(3):319–341

    Article  MathSciNet  Google Scholar 

  • Zeger SL (1988) A regression model for time series of counts. Biometrika 75(4):621–629

    Article  MathSciNet  MATH  Google Scholar 

  • Zeger SL, Qaqish B (1988) Markov regression models for time series: a quasi-likelihood approach. Biometrics 44(4):1019–1031

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

I am grateful to the editor and to three referees for a number of valuable remarks on an earlier version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dag Tjøstheim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tjøstheim, D. Some recent theory for autoregressive count time series. TEST 21, 413–438 (2012). https://doi.org/10.1007/s11749-012-0296-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11749-012-0296-0

Keywords

Mathematics Subject Classification

Navigation