Skip to main content
Log in

An adaptive method for image restoration based on high-order total variation and inverse gradient

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

The total variation (TV) regularization model for image restoration is widely utilized due to its edge preservation properties. Despite its advantages, the TV regularization can obtain spurious oscillations in flat regions of digital images and thus recent works advocate high-order TV regularization models. In this work, we propose an adaptive image restoration method based on a combination of first-order and second-order total variations regularization with an inverse-gradient-based adaptive parameter. The proposed model removes noise effectively and preserves image structures. Due to the adaptive parameter estimation based on the inverse gradient, it avoids the staircasing artifacts associated with TV regularization and its variant models. Experimental results indicate that the proposed method obtains better restorations in terms of visual quality as well as quantitatively. In particular, our proposed adaptive higher-order TV method obtained (19.3159, 0.7172, 0.90985, 0.79934, 0.99838) PSNR, SSIM, MS-SSIM, F-SIM, and P-SIM values compared to related models such as the TV-Bounded Hessian (18.9735, 0.6599, 0.8718, 0.73833, 0.99767), and TV-Laplacian (19.0345, 0.6719, 0.88198, 0.75405, 0.99789).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cheng, J., Gao, Y., Guo, B., Zuo, W.: Image restoration using spatially variant hyper-Laplacian prior. Signal Image Video Process 13(1), 155–162 (2019)

    Google Scholar 

  2. Prasath, V.B.S., Vorotnikov, D., Pelapur, R., Jose, S., Seetharaman, G., Palaniappan, K.: Multiscale Tikhonov-total variation image restoration using spatially varying edge coherence exponent. IEEE Trans. Image Process. 24(12), 5220–5235 (2015)

    MathSciNet  MATH  Google Scholar 

  3. Chan, T.F., Shen, J.: Image Processing and Analysis: Variational, PDE, Wavelet and Stochastic Methods. SIAM, New York (2005)

    MATH  Google Scholar 

  4. Thanh, D.N.H., Dvoenko, S.: A variational method to remove the combination of poisson and Gaussian noises. In: 5th International Workshop on Image Mining: Theory and Applications, pp. 38–45, Germany (2015)

  5. Shi, Y., Wang, K., Chen, C., Xu, L., Lin, L.: Structure-preserving image super-resolution via contextualized multitask learning. IEEE Trans. Multimedia. 19(12), 2804–2815 (2017). https://doi.org/10.1109/TMM.2017.2711263

    Article  Google Scholar 

  6. Liu, L., Pang, Z.-F., Duan, Y.: Retinex based on exponent-type total variation scheme. Inverse Prob. Imaging. 12(5), 1199–1217 (2018). https://doi.org/10.3934/ipi.2018050

    Article  MathSciNet  MATH  Google Scholar 

  7. Liu, P., Zhang, H., Zhang, K., Lin, L., Zuo, W.: Multi-level wavelet-CNN for image restoration. In: Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Salt Lake city (2018). https://doi.org/10.1109/CVPRW.2018.00121

  8. Fu, B., Li, Y., Wang, X.-H., Ren, Y.-G.: Image super-resolution using TV priori guided convolutional network. Pattern Recogn. Lett. 125, 780–784 (2019). https://doi.org/10.1016/j.patrec.2019.06.022

    Article  Google Scholar 

  9. Thanh, D.N.H., Prasath, V.B.S., Hieu, L.M.: A review on CT and X-ray images denoising methods. Informatica 43(2), 151–159 (2019)

    MathSciNet  Google Scholar 

  10. Thanh, D.N.H., Dvoenko, S.: Image noise removal based on total variation. Comput. Opt. 39(4), 564–571 (2015)

    Google Scholar 

  11. Prasath, V.B.S.: Quantum noise removal in X-ray images with adaptive total variation regularization. Informatica 28(3), 505–515 (2017)

    Google Scholar 

  12. Thanh, D.N.H., Dvoenko, S.: A method of total variation to remove the mixed Poisson–Gaussian noise. Pattern Rec. Image Ana. 26(2), 285–293 (2016)

    Google Scholar 

  13. Mamaev, N.V., Yurin, D.V., Krylov, A.S.: Finding the parameters of a nonlinear diffusion denoising method by ridge analysis. Comput. Math. Model. 29, 334–343 (2018). https://doi.org/10.1007/s10598-018-9413-6

    Article  MathSciNet  Google Scholar 

  14. Dovganich, A.A., Krylov, A.S.: A nonlocal image denoising algorithm using the structural similarity metric. Program. Comput. Soft. 45, 141–146 (2019). https://doi.org/10.1134/S0361768819040029

    Article  Google Scholar 

  15. Pang, Z.-F., Zhang, H.-L., Luo, S., Zeng, T.: Image denoising based on the adaptive weighted TVp regularization. Signal Process. 167, 107325 (2020). https://doi.org/10.1016/j.sigpro.2019.107325

    Article  Google Scholar 

  16. Teoh, S.H., Ibrahim, H.: Robust algorithm for broad impulse noise removal utilizing intensity distance and intensity height methodologies. SIViP 8, 223–242 (2014). https://doi.org/10.1007/s11760-013-0538-y

    Article  Google Scholar 

  17. Erkan, U., Enginoglu, S., Thanh, D.N.H., Hieu, L.M.: Adaptive frequency median filter for the salt-and-pepper denoising problem. IET Image Process. (2019). https://doi.org/10.1049/iet-ipr.2019.0398

    Article  Google Scholar 

  18. Chen, Y., et al.: Structure-adaptive fuzzy estimation for random-valued impulse noise suppression. IEEE. Trans. Circ. Syst. Video Technol. 28(2), 414–427 (2018). https://doi.org/10.1109/TCSVT.2016.2615444

    Article  Google Scholar 

  19. Hsieh, P.-W., Shao, P.-C., Yang, S.-Y.: A regularization model with adaptive diffusivity for variational image denoising. Signal Process. 149, 214–228 (2018). https://doi.org/10.1016/j.sigpro.2017.12.011

    Article  Google Scholar 

  20. Erkan, U., Thanh, D.N.H., Hieu, L.M., Enginoglu, S.: An iterative mean filter for image denoising. IEEE Access. 7, 167847–167859 (2019). https://doi.org/10.1109/ACCESS.2019.2953924

    Article  Google Scholar 

  21. Almeida, M., Almeida, L.: Blind and semi-blind deblurring of natural images. IEEE Trans. Image Process. 19(1), 36–52 (2009)

    MathSciNet  MATH  Google Scholar 

  22. Abbass, M., Kim, H., Abdelwahab, S., Haggag, S., El-Rabaie, E., Dessouky, M., El-Samie, F.: Image deconvolution using homomorphic technique. Signal Image Video Process. 13(4), 703–709 (2019)

    Google Scholar 

  23. Thanh, D.N.H., Prasath, V.B.S., Son, N.V., Hieu, L.M.: An adaptive image inpainting method based on the modified Mumford–Shah model and multiscale parameter estimation. Comput. Opt. 42(6), 251–257 (2018)

    Google Scholar 

  24. Mirkamali, M., Nagabhushan, P.: Object removal by depth-wise image inpainting. Signal Image Video Process. 9(8), 1785–1794 (2015)

    Google Scholar 

  25. Wang, W., Yuan, X.: Recent advances in image dehazing. IEEE/CAA J Automatica Sinica 4(3), 410–436 (2017)

    MathSciNet  Google Scholar 

  26. Grigoras, R., Ciocoiu, I.B.: Comparative analysis of deraining algorithms. In: International Symposium on Signals, Circuits and Systems, Romania (2017)

  27. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1990)

    MathSciNet  MATH  Google Scholar 

  28. Papafitsoros, K., Schönlieb, C.: A combined first and second order variational approach for image reconstruction. J Math. Imag. Vis. 48(2), 308–338 (2014)

    MathSciNet  MATH  Google Scholar 

  29. Arbelaez, P., Fowlkes, C., Martin, D.: The Berkeley Segmentation Dataset (BSDS). https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/. Accessed 10/12/2018

  30. Chan, R., Liang, H., Wei, S., Nikolova, M., Tai, X.: High-order total variation regularization approach for axially symmetric object tomography from a single radiograph. Inverse Prob. Imag. 9(1), 55–77 (2015)

    MathSciNet  MATH  Google Scholar 

  31. Lu, W., Duan, J., Qiu, Z., Pan, Z., Liu, R.W., Bai, L.: Implementation of high-order variational models made easy for image processing. Math. Meth. Appl. Sci. 39(14), 4208–4233 (2016)

    MathSciNet  MATH  Google Scholar 

  32. Thanh, D.N.H., Thanh, L.T., Hien, N.N., Prasath, V.B.S.: Adaptive Total Variation L1 Regularization for Salt and Pepper Image Denoising. Optik-Int. J. Light Electron Opt. (2020). https://doi.org/10.1016/j.ijleo.2019.163677

    Article  Google Scholar 

  33. Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Google Scholar 

  34. Wang, Z., Simoncelli, E., Bovik, A.: Multi-scale structural similarity for image quality assessment. In: 37th IEEE Asilomar Conference on Signals, Systems and Computers, USA (2003)

  35. Zhang, L., Zhang, L., Mou, X., Zhang, D.: FSIM: a feature similarity index for image quality assessment. IEEE Trans. Image Process. 20(8), 2378–2386 (2011)

    MathSciNet  MATH  Google Scholar 

  36. Gu, K., Li, L., Lu, H., Min, X., Lin, W.: A fast reliable image quality predictor by fusing micro-and macro-structures. IEEE Trans. Ind. Electron. 64(5), 3903–3912 (2017)

    Google Scholar 

  37. Gu, K., Zhai, G., Lin, W., Yang, X., Zhang, W.: No-reference image sharpness assessment in autoregressive parameter space. IEEE Trans. Image Process. 24(10), 3218–3231 (2015)

    MathSciNet  MATH  Google Scholar 

  38. Gu, K., Wang, S., Yang, H., Lin, W., Zhai, G., Yang, X., Zhang, W.: Saliency-guided quality assessment of screen content images. IEEE Trans. Multimed. 18(6), 1098–1110 (2016)

    Google Scholar 

  39. Gu, K., Qiao, J., Min, X., Yue, G., Lin, W., Thalmann, D.: Evaluating quality of screen content images via structural variation analysis. IEEE Trans. Vis. Comput. Graph. 24(10), 2689–2701 (2017)

    Google Scholar 

  40. Lu, W., Duan, J.: Higher order variational models (HOVM) for image processing. https://github.com/j-duan/HOVM. Accessed 10/12/2018

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dang N. H. Thanh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thanh, D.N.H., Prasath, V.S., Hieu, L.M. et al. An adaptive method for image restoration based on high-order total variation and inverse gradient. SIViP 14, 1189–1197 (2020). https://doi.org/10.1007/s11760-020-01657-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-020-01657-9

Keywords

Navigation