Skip to main content
Log in

Robust adaptive polarization analysis method for eliminating ground roll in 3C land seismics

  • Published:
Applied Geophysics Aims and scope Submit manuscript

Abstract

To improve the data quality of converted waves, and better identify and suppress the strong ground-roll interference in three-component (3C) seismic recordings on land, we present an adaptive polarization filtering method, which can effectively separate the groundroll interference by combining complex polarization and instantaneous polarization analysis. The ground roll noise is characterized by elliptical plane polarization, strong energy, low apparent velocity, and low frequency. After low-pass filtering of the 3C data input within a given time-window of the ground roll, the complex covariance matrix is decomposed using the sliding time window with overlapping data and length that depends on the dominant ground-roll frequency. The ground-roll model is established using the main eigenvectors, and the ground roll is detected and identified using the instantaneous polarization area attributes and average energy constraints of the ground-roll zone. Finally, the ground roll is subtracted. The threshold of the method is stable and easy to select, and offers good groundroll detection. The method is a robust polarization filtering method. Model calculations and actual data indicate that the method can effectively identify and attenuate ground roll while preserving the effective signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benhama, A., Cliet, C., and Dubesset, M., 1988, Study and application of spatial directional filterings in threecomponent recordings: Geophysical Prospecting, 36, 591–613.

    Article  Google Scholar 

  • Chen, Y., Zhang, Z. J., and Tian, X. B., 2005, Complex polarization analysis based on windowed Hilbert transform and its application: Chinese J. Geophys (in Chinese), 48(4), 889–895.

    Google Scholar 

  • Christoffersson, A., Husebye, E. S., and Ingate, S. F., 1988, Wavefield decomposition using ML probabilities in modelling single-site 3-component records, Geophys. J., 93, 197–213.

    Article  Google Scholar 

  • De, Meersman. K., and Kendall, R., 2005, A complex SVD -polarization filter for ground roll attenuation on multicomponent data: 67th EAGE Conference & Exhibition, Extended Abstracts, B019.

    Google Scholar 

  • Diallo, M. S., Ross, W. S., and Krohn, C. E., 2008, Constrained polarization filtering for surface-wave mitigation: 78th Annual International Meeting, SEG, Expanded Abstracts, 1058–1061, PAPR195.

    Google Scholar 

  • Flinn, E. A., 1965, Signal analysis using rectilinearity and direction of particle motion: Proceedings of the IEEE, 53, 1874–1876.

    Article  Google Scholar 

  • Franco, R., and Musacchio, G., 2001, Polarization filter with singular value decomposition: Geophysics, 66, 932–938.

    Article  Google Scholar 

  • Huang, Z. Y., Gao, L., Xu, Y. M., et al., 1996, The analysis of polarization in three-component seismic data and its application: Geophysical Prospecting for Petroleum (in Chinese), 35(2), 9–16.

    Google Scholar 

  • Jackson, G. M., Mason, I. M., and Greenhalgh, S. A., 1991, Principal component transforms of triaxial recordings by singular value decomposition: Geophysics, 56(4), 528–533.

    Article  Google Scholar 

  • Jin, S., and Ronen, S., 2005, Ground roll detection and attenuation by 3C polarization analysis: 67th EAGE Conference & Exhibition, Extended Abstracts, B020.

    Google Scholar 

  • Jurkevics, A., 1988, Polarization analysis of three-component array data: Bulletin of the Seismological Society of America, 78(5), 1725–1743.

    Google Scholar 

  • Lu, J., Wang, Y., and Yang, C. Y., Instantaneous polarization filtering focused on suppression of surface waves: Applied Geophysics, 7(1), 88–97.

  • Morozov, L. B., and Smithson, S. B., 1996, Instantaneous polarization attributes and directional filtering: Geophysics, 61(3), 872–881.

    Article  Google Scholar 

  • René, R. M., Fitter, J. L., Forsyth, P. M., et al., 1986, Multicomponent seismic studies using complex trace analysis: Geophysics, 51(6), 1235–1251.

    Article  Google Scholar 

  • Samson, J. C., 1977, Matrix and Stokes vector representation of detectors for polarized wave-forms: theory, with some applications to teleseismic waves: Geophysical Journal of the Royal Astronomical Society, 51, 583–603.

    Article  Google Scholar 

  • Shieh, C., and Herrmann, R. B., 1990, Ground roll: Rejection using polarization filters: Geophysics, 55, 1216–1222.

    Article  Google Scholar 

  • Shimshoni, M., and Smith, S. W., 1964, Seismic signal enhancement with three-component detectors: Geophysics, 29, 664–671.

    Article  Google Scholar 

  • Stewart, R. R., 1990, Ground-roll filtering using local instantaneous polarization: CREWES, Research Reports.

    Google Scholar 

  • Tatham, R. H., and McCormack, M. D., 1991, Multicomponent seismology in petroleum exploration: SEG Publication, Tulsa, Ok.

    Book  Google Scholar 

  • Tiapkina, O., 2008, Advanced detector of ground roll for single-station SVD-based polarization filtering: 70th EAGE Conference & Exhibition, Extended Abstracts, P141.

    Google Scholar 

  • Tiapkina, O., 2009, When single-station SVD-polarization filtering is effective and how it compares to multistation procedures: 71st EAGE Conference & Exhibition, Extended Abstracts, P207.

    Google Scholar 

  • Tiapkina, O., Landrø, M., and Tyapkin, Y., 2010, Singlestation SVD-based polarization filtering–theoretical and synthetic data investigations: 72nd EAGE Conference & Exhibition, Extended Abstracts, P127.

    Google Scholar 

  • Tiapkina, O., Landrø, M., Tyapkin, Y., and Link, B., 2011, Single-station SVD-based polarization filtering of ground roll: Investigation of limitations and pitfalls: 73rd EAGE Conference & Exhibition, Extended Abstracts, P094.

    Google Scholar 

  • Vidale, T., 1986, Complex polarization analysis of particle motion: Bulletin of the Seismological Society of America, 76, 1393–1405.

    Google Scholar 

  • White, J. E., 1964, Motion product seismograms: Geophysics, 29, 288–298.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The research is supported by the National Natural Science Foundation of China (No. 41074080) and the Important National Science & Technology Specific Projects (No. 2011ZX05019-008).

Chen Hai-Feng is a PhD student at the China University of Petroleum (Beijing), as well as a senior engineer in the Geophysical R&D Center, BGP, CNPC. He received his BS (2001) from the Southwest Petroleum Institute and MS (2004) from the University of Petroleum (Beijing). His research mainly focuses on multicomponent seismic exploration technology research and geophysical software development. He is a member of SEG.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, HF., Li, XY., Qian, ZP. et al. Robust adaptive polarization analysis method for eliminating ground roll in 3C land seismics. Appl. Geophys. 10, 295–304 (2013). https://doi.org/10.1007/s11770-013-0386-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11770-013-0386-0

Keywords

Navigation