Skip to main content
Log in

Competitive adsorption of Cu(II) and Pb(II) ions from aqueous solutions by Ca-alginate immobilized activated carbon and Saccharomyces cerevisiae

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

To establish a theoretical foundation for simultaneous removal of multi-heavy metals, the adsorption of Cu(II) and Pb(II) ions from their single and binary systems by Ca-alginate immobilized activated carbon and Saccharomyces cerevisiae (CAS) was investigated. The CAS beads were characterized by Scanning electron microscope (SEM) and Fourier transformed infrared spectroscopy (FTTR). The effect of initial pH, adsorbent dosage, contact time and initial metal ions concentration on the adsorption process was systematically investigated. The experimental maximum contents of Cu(II) and Pb(II) uptake capacity were determined as 64.90 and 166.31 mg/g, respectively. The pseudo-second-order rate equation and Langmuir isotherm model could explain respectively the kinetic and isotherm experimental data of Cu(II) and Pb(II) ions in single-component systems with much satisfaction. The experimental adsorption data of Cu(II) and Pb(II) ions in binary system were best described by the extended Freundlich isotherm and the extended Langmuir isotherm, respectively. The removal of Cu(II) ions was more significantly influenced by the presence of the coexistent Pb(II) species, while the Pb(II) removal was affected slightly by varying the initial concentration of Cu(II). The CAS was successfully regenerated using 1 mol/L HNO3 solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. PAPAGEORGIOU S K, KATSAROS F K, KOUVELOS E P, NOLAN J W, DEIT H L, KANELLOPOULOS N K. Heavy metal sorption by calcium alginate beads from Laminaria digitata [J]. J Hazard Mater, 2006, 137(3): 1765–1772.

    Article  Google Scholar 

  2. PAPAGEORGIOU S K, KATSAROS F K, KOUVELOS E P, KANELLOPOULOS N K. Prediction of binary adsorption isotherms of Cu2+, Cd2+ and Pb2+ on calcium alginate beads from single adsorption data [J]. J Hazard Mater, 2009, 162(2/3): 1347–1354.

    Article  Google Scholar 

  3. PAPAGEORGIOU S K, KOUVELOS E P, KATSAROS F K. Calcium alginate beads from Laminaria digitata for the removal of Cu2+ and Cd2+ from dilute aqueous metal solutions [J]. Desalination, 2008, 224(1/2/3): 293–306.

    Article  Google Scholar 

  4. DURSUN A Y. A comparative study on determination of equilibrium, kinetic and thermodynamic parameters of biosorption of copper(II) and lead(II) ions onto pretreated Aspergillus niger [J]. Biochem Eng J, 2006, 28(2): 187–195.

    Article  MathSciNet  Google Scholar 

  5. AHLUWALIA S S, GOYAL D. Microbial and plant derived biomass for removal of heavy metals from wastewater [J]. Bioresour Technol, 2007, 98(12): 2243–2257.

    Article  Google Scholar 

  6. WANG Jing-song, HU Xin-jiang, LIU Yun-guo, XIE Shui-bo, BAO Zheng-lei. Biosorption of uranium(VI) by immobilized Aspergillus fumigatus beads [J]. J Environ Radioact, 2010, 101(6): 504–508.

    Article  Google Scholar 

  7. MATA Y N, BLÁZQUEZ M L, BALLESTER A, GONZÁLEA F, MUÑOZ J A. Biosorption of cadmium, lead and copper with calcium alginate xerogels and immobilized Fucus vesiculosus [J]. J Hazard Mater, 2009, 163(2/3): 555–562.

    Article  Google Scholar 

  8. SRIVASTAVA V C, MALL I D, MISHRA I M. Competitive adsorption of cadmium(II) and nickel(II) metal ions from aqueous solution onto rice husk ash [J]. Chem Eng Process, 2009, 48(1): 370–379.

    Article  Google Scholar 

  9. AKSU Z, AÇLKEL Ü, KABASAKAL E, TEZER S. Equilibrium modeling of individual and simultaneous biosorption of chromium(VI) and nickel(II) onto dried activated sludge [J]. Water Res, 2002, 36(12): 3063–3073.

    Article  Google Scholar 

  10. LI Lan-juan, LIU Fu-qiang, JING Xiao-sheng, LING Pan-pan, LI Ai-min. Displacement mechanism of binary competitive adsorption for aqueous divalent metal ions onto a novel IDA-chelating resin: Isotherm and kinetic modeling [J]. Water Res, 2011, 45(3): 1177–1188.

    Article  Google Scholar 

  11. ZHOU Lin-cheng, LI Yan-feng, BAI Xue, ZHAO Guang-hui. Use of microorganisms immobilized on composite polyurethane foam to remove Cu(II) from aqueous solution [J]. J Hazard Mater, 2009, 167(1/2/3): 1106–1113.

    Article  Google Scholar 

  12. PELIT L, ERTAŞ F N, EROĞLU A E, SHAHWAN T, TURAL H. Biosorption of Cu(II) and Pb(II) ions from aqueous solution by natural spider silk [J]. Bioresour Technol, 2011, 102(19): 8807–8813.

    Article  Google Scholar 

  13. IBRAHIM W M. Biosorption of heavy metal ions from aqueous solution by red macroalgae [J]. J Hazard Mater, 2011, 192(3): 1827–1835.

    Article  Google Scholar 

  14. HU Xin-jiang, WANG Jing-song, LIU Yun-guo, LI Xin, ZENG Guang-ming, BAO Zheng-lei, ZENG Xiao-xia, CHEN An-wei, LONG Fei. Adsorption of chromium(VI) by ethylenediamine-modified cross-linked magnetic chitosan resin: Isotherms, kinetics and thermodynamics [J]. J Hazard Mater, 2011, 185(1): 306–314.

    Article  Google Scholar 

  15. WANG Jian-long, CHEN Can. Biosorption of heavy metals by Saccharomyces cerevisiae: A review [J]. Biotechnol Adv, 2006, 24(5): 427–451.

    Article  Google Scholar 

  16. LIU Ying-hui, CAO Qi-lin, LUO Fang, CHEN Ji. Biosorption of Cd2+, Cu2+, Ni2+ and Zn2+ ions from aqueous solutions by pretreated biomass of brown algae [J]. J Hazard Mater, 2009, 163(2/3): 931–938.

    Article  Google Scholar 

  17. ÇABUK A, AKAR T, TUNALI S, GEDIKLI S. Biosorption of Pb(II) by industrial strain of Saccharomyces cerevisiae immobilized on the biomatrix of cone biomass of Pinus nigra: Equilibrium and mechanism analysis [J]. Chem Eng J, 2007, 131(1/2/3): 293–300.

    Article  Google Scholar 

  18. MACHIDA M, AIKAWA M, TATSUMOTO H. Prediction of simultaneous adsorption of Cu(II) and Pb(II) onto activated carbon by conventional Langmuir type equations [J]. J Hazard Mater, 2005, 120(1/2/3): 271–275.

    Article  Google Scholar 

  19. SWAYAMPAKULA K, BODDU V M, NADAVALA S K, ABBURI K. Competitive adsorption of Cu(II), Co(II) and Ni(II) from their binary and tertiary aqueous solutions using chitosan-coated perlite beads as biosorbent [J]. J Hazard Mater, 2009, 170(2/3): 680–689.

    Article  Google Scholar 

  20. LI Yan-hui, XIA Bing, ZHAO Quan-sheng, LIU Fu-qiang, ZHANG Pan, DU Qiu-ju, WANG De-chang, LI Da, WANG Zong-hua, Xia Yan-zhi. Removal of copper ions from aqueous solution by calcium alginate immobilized kaolin [J]. J Environ Sci, 2011, 23(3): 404–411.

    Article  MATH  Google Scholar 

  21. YAHAYA Y A, DON M M, BHATIA S. Biosorption of copper(II) onto immobilized cells of Pycnoporus sanguineus from aqueous solution: Equilibrium and kinetic studies [J]. J Hazard Mater, 2009, 161(1): 189–195.

    Article  Google Scholar 

  22. FAN Ting, LIU Yun-uo, FENG Bao-ying, ZENG Gung-mingg, YANG Chun-ping, ZHOU Ming, ZHOU Hai-zhou, TAN Zhen-feng, WANG Xin. Biosorption of cadmium(II), zinc(II) and lead(II) by Penicillium simplicissimum: Isotherms, kinetics and thermodynamics [J]. J Hazard Mater, 2008, 160(2/3): 655–661.

    Article  Google Scholar 

  23. BAYRAMOĞLU G, BEKTAŞ S, AR1CA M Y. Biosorption of heavy metal ions on immobilized white-rot fungus Trametes versicolor [J]. J Hazard Mater, 2003, 101(3): 285–300.

    Article  Google Scholar 

  24. ANIRUDHAN T S, SUCHITHRA P S. Heavy metals uptake from aqueous solutions and industrial wastewaters by humic acid-immobilized polymer/bentonite composite: Kinetics and equilibrium modeling [J]. Chem Eng J, 2010, 156(1): 146–156.

    Article  Google Scholar 

  25. AR1CA M Y, KAÇAR Y, GENÇ Ö. Entrapment of white-fungus Trametes versicolor in Ca-alginate beads: Preparation and biosorption kinetic analysis for cadmium removal from an aqueous solution [J]. Bioresour Technol, 2001, 80(2): 121–129.

    Article  Google Scholar 

  26. LAGERGREN S. About the theory of so-called adsorption of soluble substances [J]. K Sven Vetenskapsakad Handl, 1898, 24(4): 1–39.

    Google Scholar 

  27. HO Y S, MCKAY G. Sorption of dye from aqueous solution by peat [J]. Chem Eng J, 1998, 70(2): 115–124.

    Google Scholar 

  28. HO Y S, MCKAY G. A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents [J]. Process Saf Environ Prot, 1998, 76(4): 332–340.

    Article  Google Scholar 

  29. HO Y S, MCKAY G. Pseudo-second order model for sorption processes [J]. Process Biochem, 1999, 34(5): 451–465.

    Article  Google Scholar 

  30. HO Y S, MCKAY G. The kinetics of sorption of divalent metal ions onto sphagnum moss flat [J]. Water Res, 2000, 34: 735–742.

    Article  Google Scholar 

  31. PENG Qing-qing, LIU Yun-guo, ZENG Guang-ming, XU Wei-hua, YANG Chun-ping, ZHANG Jing-jin. Biosorption of copper(II) by immobilizing Saccharomyces cerevisiae on the surface of chitosan-coated magnetic nanoparticles from aqueous solution [J]. J Hazard Mater, 2010, 177(1/2/3): 676–682.

    Article  Google Scholar 

  32. FOO K Y, HAMEED B H. Insights into the modeling of adsorption isotherm systems [J]. Chem Eng J, 2010, 156(1): 2–10.

    Article  Google Scholar 

  33. FEBRIANTO J, KOSASIH A N, SUNARSO J, JU Y H, INDRASWATI N, ISMADJI S. Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: A summary of recent studies [J]. J Hazard Mater, 2009, 162(2/3): 616–645.

    Article  Google Scholar 

  34. YUAN Xing-zhong, JIANG Li-li, ZENG Guang-ming, LIU Zhi-feng, ZHONG Hua, HUANG Hua-jun, ZHOU Mei-fang, CUI Kai-long. Effect of rhamnolipids on cadmium adsorption by Penicillium simplicissimum [J]. J Cent South Univ, 2012, 19(4): 1073–1080.

    Article  Google Scholar 

  35. PEARSON R G. Hard soft acids bases [J]. J Am Chem Soc, 1963, 85(22): 3533–3539.

    Article  Google Scholar 

  36. LUNA A S, COSTA A L H, COSTA D A C A, HENRIQUES C A. Competitive biosorption of cadmium(II) and zinc(II) ions from binary systems by Sargassum filipendula [J]. Bioresour Technol, 2010, 101(4): 5104–5111.

    Article  Google Scholar 

  37. APIRATIKUL R, PAVASANT P. Sorption isotherm model for binary component sorption of copper, cadmium, and lead ions using dried green macroalga, Caulerpa lentillifera [J]. Chem Eng J, 2006, 119(2/3): 135–145.

    Article  Google Scholar 

  38. SHEINDORF C, REBHUN M, SHEINTUCH M. A Freundlich-type multicomponent isotherm [J]. J Colloid Interface Sci, 1981, 79(1): 136–142.

    Article  Google Scholar 

  39. PAGNANELLI F, ESPOSITO A, VEGLIÒ F. Multi-metallic modelling for biosorption of binary systems [J]. Water Res, 2002, 36(16): 4095–4105.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-guo Liu  (刘云国).

Additional information

Foundation item: Project(11JJ2031) supported by the Key Project of Natural Science Foundation of Hunan Province, China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, M., Liu, Yg., Hu, Xj. et al. Competitive adsorption of Cu(II) and Pb(II) ions from aqueous solutions by Ca-alginate immobilized activated carbon and Saccharomyces cerevisiae . J. Cent. South Univ. 20, 2478–2488 (2013). https://doi.org/10.1007/s11771-013-1760-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-013-1760-z

Key words

Navigation