Skip to main content
Log in

Vacuum preloading combined electroosmotic strengthening of ultra-soft soil

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

To assess the effectiveness of vacuum preloading combined electroosmotic strengthening of ultra-soft soil and study the mechanism of the process, a comprehensive experimental investigation was performed. A laboratory test cell was designed and applied to evaluate the vacuum preloading combined electroosmosis. Several factors were taken into consideration, including the directions of the electroosmotic current and water induced by vacuum preloading and the replenishment of groundwater from the surrounding area. The results indicate that electroosmosis together with vacuum preloading improve the soil strength greatly, with an increase of approximately 60%, and reduce the water content of the soil on the basis of consolidation of vacuum preloading, however, further settlement is not obvious with only 1.7 mm. The reinforcement effect of vacuum preloading combined electroosmosis is better than that of electroosmosis after vacuum preloading. Elemental analysis using X-ray fluorescence proves that the soil strengthening during electroosmotic period in this work is mainly caused by electroosmosis-induced electrochemical reactions, the concentrations of Al2O3 in the VPCEO region increase by 2.2%, 1.5%, and 0.9% at the anode, the midpoint between the electrodes, and the cathode, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LIU Ci-gui. Report on the manage of oceanic exploit in 2007–2011 [R]. China Oceanic Information Network, 2011–2012.

  2. KJELLMAN W. Consolidation of clayey soils by atmospheric pressure [C]// Proceedings of a Conference on Soil Stabilization. Boston: Massachusetts Institute of Technology, 1952: 258–263.

    Google Scholar 

  3. COGNON J M, JURAN I, THEVANAYAGAM S. Vacuum consolidation technology-Principles and field experience [R]. Proc Conf on Vertical and Horizontal Deformations of Foundations and Embankments Deformations. College Station, 1994: 1237–1248.

    Google Scholar 

  4. INDRARATNA B, SATHANANTHAN I, RUJIKIATKAMJORN C, BALASUDRAMANIAM A S. Analytical and numerical modeling of soft soil stabilized by PVD incorporating vacuum preloading [J]. International Journal of Geomechanics, 2005, 5(2): 114–124.

    Article  Google Scholar 

  5. SHANG J Q, TANG M, MIAO Z. Vacuum preloading consolidation of reclaimed land: A case study [J]. Canadian Geotechnical Journal, 1998, 35(3): 740–749.

    Article  Google Scholar 

  6. INDRARATNA B, RUJIKIATKAMJORN C, AMERATUNGA J, BOYLE P. Performance and prediction of vacuum combined surcharge consolidation at port of Brisbane [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(11): 1009–1018.

    Article  Google Scholar 

  7. CHAI J C, CARTER J P, HAYASHI S. Vacuum consolidation and its combination with embankment loading [J]. Canadian Geotechnical Journal, 2006, 43(10): 985–996.

    Article  Google Scholar 

  8. CASAGRANDE L. Electro-osmotic stabilization of soils [J]. Journal of the Boston Society of Civil Engineers, 1952, 39(1): 51–83.

    Google Scholar 

  9. LAURSEN S. Laboratory investigation of electroosmosis in bentonites and natural clays [J]. Canadian Geotechnical Journal, 1997, 34(5): 664–671.

    Google Scholar 

  10. KANIRAJ S R, HUONG H L, YEE J H S. Electro-osmotic consolidation studies on peat and clayey silt using electric vertical drain [J]. Geotechnical and Geological Engineering, 2011, 29(3): 277–295.

    Article  Google Scholar 

  11. BURNOTTE F, LEFEBVRE G, GRONDIN G. A case record of electroosmotic consolidation of soft clay with improved soil-electrode contact [J]. Canadian Geotechnical Journal, 2004, 41(6): 1038–1053.

    Article  Google Scholar 

  12. HU Li-ming, WU Wei-ling, WU Hui. Theoretical analysis and numerical simulation of electroosmosis consolidation for soft clay [J]. Rock and Soil Mechanics, 2010, 31(12): 2977–3983.

    Google Scholar 

  13. LO K Y, HO K S, INCULET I I. Field test of electroosmotic strengthening of soft sensitive clays [J]. Canadian Geotechnical Journal, 1991, 28(1): 74–83.

    Article  Google Scholar 

  14. CHEW S H, KARUNARATNE G P, KUMA V M, LIM L H, TOH M L, HEE A M. A field trial for soft clay consolidation using electric vertical drains [J]. Geotextiles and Geomembranes, 2004, 22(1): 17–35.

    Article  Google Scholar 

  15. GOPALAKRISHNAM S, MUJUMDA A S, WEBER M E, PIEKONEN M. Electrokinetically enhanced vacuum dewatering of mineral slurries [J]. Filtration and Separation, 1996, 33(10): 929–932.

    Article  Google Scholar 

  16. GAO Zhi-yi, ZHANG Mei-yan, ZHANG Jian. Laboratory model test of vacuum preloading in combination with electro-osmotic consolidation [J]. China Harbour Engineering, 2000, 19(5): 58–61.

    Google Scholar 

  17. FANG Ying-guang, XU Min, ZHU Zhong-wei. Experimental investigation into draining consolidation behavior of soda residue soil under vacuum preloading-electro-osmosis [J]. Journal of South China University of Technology: Natural Science Edition, 2006, 34(11): 70–75.

    Google Scholar 

  18. ALSHAWABKEH A N, GALE R J, OZSU-ACAR E, BRICKA R M. Optimization of 2-D electrode configuration for electrokinetic remediation [J]. Journal of Soil Contamination, 1999, 8(6): 617–635.

    Article  Google Scholar 

  19. SHANG J Q. Electroosmosis-enhanced preloading consolidation via vertical drains [J]. Canadian Geotechnical Journal, 1998, 35(3): 491–499.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Peng  (彭劼).

Additional information

Foundation item: Project(2009B13014) supported by the Fundamental Research Funds for the Central Universities of China; Project(IRT1125) supported by the Program for Changjiang Scholars and Innovative Research Team in University, China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, J., Xiong, X., Mahfouz, A.H. et al. Vacuum preloading combined electroosmotic strengthening of ultra-soft soil. J. Cent. South Univ. 20, 3282–3295 (2013). https://doi.org/10.1007/s11771-013-1852-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-013-1852-9

Key words

Navigation