Skip to main content
Log in

DFT calculation on relaxation and electronic structure of sulfide minerals surfaces in presence of H2O molecule

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

First-principles calculations are performed to investigate the relaxation and electronic properties of sulfide minerals surfaces (MoS2, Sb2S3, Cu2S, ZnS, PbS and FeS2) in presence of H2O molecule. The calculated results show that the structure and electronic properties of sulfide minerals surfaces have been influenced in presence of H2O molecule. The adsorption of the flotation reagent at the interface of mineral-water would be different from that of mineral surface due to the changes of surface structures and electronic properties caused by H2O molecule. Hence, the influence of H2O molecule on the reaction of flotation reagent with sulfide mineral surface will attract more attention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ZHU J J, LI X A, CHEN B C. Effect and mechanism of magnetized water on the floatability of hematite [J]. China Mining, 2003, 12(8): 44–46. (in Chinese)

    Google Scholar 

  2. ZHU J J, LI X A, CHEN B C. Effect and mechanism of magnetized water on the floatability of quartz [J]. Journal of Anshan University of Science and Technology, 2003, 26(3): 161–163. (in Chinese)

    Google Scholar 

  3. SUN Z X, FORSLING W, RÖNNGREN L, SJÖBERG S. Surface reactions in aqueous metal sulfide systems. 1. Fundamental surface reactions of hydrous PbS and ZnS [J]. International Journal of Mineral Processing, 1991, 33(1/2/3/4): 83–93.

    Article  Google Scholar 

  4. RÖNNGREN L, SJÖBERG S, SUN Zhong-xi, FORSLING W, SCHINDLER P W. Surface reactions in aqueous metal sulfide systems: 2. Ion exchange and acid/base reactions at the ZnS-H2O interface [J]. Journal of Colloid and Interface Science, 1991, 145(2): 96–404.

    Article  Google Scholar 

  5. RÖNNGREN L, SJÖBERG S, SUN Zhongxi, FORSLING W. Surface reactions in aqueous metal sulfide systems: 5. The complexation of sulfide ions at the ZnS-H2O and PbS-H2O interfaces [J]. Journal of Colloid and Interface Science, 1994, 162(1): 227–235.

    Article  Google Scholar 

  6. WEERASOORIYA R, TOBSCHALL H J. Pyrite-water interactions: Effects of pH and pFe on surface charge [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 264(1/2/3): 68–74.

    Article  Google Scholar 

  7. WEN S M, ZHANG W B. Study of the theory of H2O stability on the mineral surfaces [J]. Nonferrous Metals: Mineral Processing Section, 1995, 6: 34–40.

    Google Scholar 

  8. CATALANO J G. Relaxations and interfacial water ordering at the corundum (110) surface [J]. The Journal of Physical Chemistry C, 2010, 114(14): 6624–6630.

    Article  Google Scholar 

  9. CHEN J H, FENG Q M, LU Y P, CHEN J. Study on interaction energy between flotation reagent and mineral surface [J]. Journal of Central South University of Technology, 1998, 5(2): 108–112.

    Article  Google Scholar 

  10. CHEN J H, FENG Q M, LU Y P. Calculation of interaction energy of flotation reagent [J]. Transactions of Nonferrous Metals Society of China, 1999, 9(2): 351–357.

    Google Scholar 

  11. STIRLING A, BERNASCONI M, PARRINELLO M. Ab initio simulation of water interaction with the (100) surface of pyrite [J]. The Journal of Chemical Physics, 2003, 118(19): 8917–8926.

    Article  Google Scholar 

  12. STEELE H M, WRIGHT K, HILLER I H. A quantum-mechanical study of the (110) surface of sphalerite (ZnS) and its interaction with Pb2+ species [J]. Physics and Chemistry of Minerals, 2003, 30: 69–75.

    Article  Google Scholar 

  13. CHEN J H, CHEN Y, LI Y Q. Quantum-mechanical study of the effect of lattice defects on surface properties and copper activation of sphalerite surface [J]. Transactions of Nonferrous Metals Society of China, 2010, 20(6): 1121–1230.

    Article  Google Scholar 

  14. CHEN J H, CHEN Y, LI Y Q. Effect of vacancy defects on electronic properties and activation of sphalerite (110) surface by first-principles [J]. Transactions of Nonferrous Metals Society of China, 2010, 20(3): 502–506.

    Article  Google Scholar 

  15. CHEN J H, CHEN Y, ZENG X Q, LI Y Q. First principle study of effect of Fe impurity on electronic structure and activation of sphalerite surface [J]. Transactions of Nonferrous Metals Society of China, 2009, 19(8): 1517–1523.

    Google Scholar 

  16. LI Y Q, CHEN J H, CHEN Y, GUO J. Density functional theory calculation of surface properties of pyrite (100) with implications for flotation [J]. Transactions of Nonferrous Metals Society of China, 2011, 21(4): 919–926.

    Google Scholar 

  17. LI Y Q, CHEN J H, CHEN Y, GUO J. DFT study of influences of As, Co and Ni impurities on pyrite (100) surface oxidation by O2 molecule [J]. Chemical Physics Letters, 2011, 511(4/5/6): 389–392.

    Article  Google Scholar 

  18. CHEN J H, WANG L, CHEN Y, LI Y Q, GUO J. Density functional theory of effects of vacancy defects on electronic structure and flotation of galena [J]. Transactions of Nonferrous Metals Society of China, 2010, 20(9): 1815–1821.

    Article  Google Scholar 

  19. CLARK S J, SEGALL M D, PICKARD C J, HASNIP P J, PROVERT M I J, REFSON K, PAYNE M C. First principles methods using CASTEP [J]. Zeitschrift fuer Kristallograhie, 2005, 220(5/6): 567–570.

    Google Scholar 

  20. SEGALL M D, LINDAN P J D, PRONBERT M J, PICKARD C J, HASNIP P J, CLARK S J, PAYNE M C. First-principles simulation: Ideas, illustrations and the CASTEP code [J]. Journal of Physics: Condensed Matter, 2002, 14(11): 2717–2744.

    Google Scholar 

  21. XIE X D, LU D. Energy band theory of solids [M]. Shanghai: Fudan University Press, 1998: 1–26.

    Google Scholar 

  22. MARZARI N, VANDERBILT D, PAYNE M C. Ensemble density-functional theory for ab initio molecule dynamics of metals and finite-temperature insulators [J]. Physical Review Letters, 1997, 79(7): 1337–1340.

    Article  Google Scholar 

  23. JONES R O, GUNNARSSON O. The density functional formalism, its applications and prospects [J]. Reviews of Modern Physics, 1989, 61(3): 689–746.

    Article  Google Scholar 

  24. KOHN W, SHAM L J. Self-consistent equations including exchange and correlation effects [J]. Physical Review, 1965, 140(4A): A1133–A1138.

    Article  MathSciNet  Google Scholar 

  25. VANDERBILT D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism [J]. Physical Review B, 1990, 41(11): 7892–7895.

    Article  Google Scholar 

  26. PERDEW J P, CHEVARY J A, VOSKO S H, JACKSON K A, PEDERSON M R, SINGH D J, FIOLHAIS C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation [J]. Physical Review B, 1992, 46(11): 6671–6687.

    Article  Google Scholar 

  27. MONKHORST J, PACK J D. Special points for brillouin-zone integrations [J]. Physical Review B, 1976, 13(12): 5188–5192.

    Article  MathSciNet  Google Scholar 

  28. PCAK J D, MONKHORST H J. Special point for Brillouin-zone integrations—A reply [J]. Physical Review B, 1977, 16(4): 1748–1749.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-hua Chen  (陈建华).

Additional information

Foundation item: Project(51164001) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Jh., Long, Xh., Zhao, Ch. et al. DFT calculation on relaxation and electronic structure of sulfide minerals surfaces in presence of H2O molecule. J. Cent. South Univ. 21, 3945–3954 (2014). https://doi.org/10.1007/s11771-014-2382-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-014-2382-9

Key words

Navigation