Skip to main content
Log in

Simultaneous optimization of transit network and public bicycle station network

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The traditional manner to design public transportation system is to sequentially design the transit network and public bicycle network. A new public transportation system design problem that simultaneously considers both bus network design and public bicycle network design is proposed. The chemical reaction optimization (CRO) is designed to solve the problem. A shortcoming of CRO is that, when the two-molecule collisions take place, the molecules are randomly picked from the container. Hence, we improve CRO by employing different mating strategies. The computational results confirm the benefits of the mating strategies. Numerical experiments are conducted on the Sioux-Falls network. A comparison with the traditional sequential modeling framework indicates that the proposed approach has a better performance and is more robust. The practical applicability of the approach is proved by employing a real size network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. FARAHANI R Z, MIANDOABCHI E, SZETO W Y, RASHIOI H. A review of urban transportation network design problems [J]. European Journal of Operational Research, 2013, 229(2): 281–302.

    Article  MathSciNet  Google Scholar 

  2. GUIHAIRE V, HAO J. Transit network design and scheduling: A global review [J]. Transportation Research Part A: Policy and Practice, 2008, 42(10): 1251–1273.

    Google Scholar 

  3. DUBOIS D, BEL G, LLIBRE M. A set of methods in transportation network synthesis and analysis [J]. Journal of the Operational Research Society, 1979: 797–808.

    Google Scholar 

  4. PATTNAIK S B, MOHAN S, TOM V M. Urban bus transit route network design using genetic algorithm [J]. Journal of Transportation Engineering, 1998, 124(4): 368–375.

    Article  Google Scholar 

  5. AGRAWAL J, MATHEW T V. Transit route network design using parallel genetic algorithm [J]. Journal of Computing in Civil Engineering, 2004, 18(3): 248–256.

    Article  Google Scholar 

  6. GUAN J F, YANG H, WIRASINGHE S C. Simultaneous optimization of transit line configuration and passenger line assignment [J]. Transportation Research Part B: Methodological, 2006. 40(10): 885–902.

    Article  Google Scholar 

  7. CIPRIANI E, GORI S, PETRELLI M. Transit network design: A procedure and an application to a large urban area [J]. Transportation Research Part C: Emerging Technologies, 2012, 20(1): 3–14.

    Article  Google Scholar 

  8. CEDER A. Bus frequency determination using passenger count data [J]. Transportation Research Part A: General, 1984. 18(5): 439–453.

    Article  Google Scholar 

  9. van OUDHEUSDEN D L, ZHU W. Trip frequency scheduling for bus route management in Bangkok [J]. European Journal of Operational Research, 1995, 83(3): 439–451.

    Article  MATH  Google Scholar 

  10. YU B, YANG Z, YAO J. Genetic algorithm for bus frequency optimization [J]. Journal of Transportation Engineering, 2009, 136(6): 576–583.

    Article  Google Scholar 

  11. SZETO W Y, WU Y. A simultaneous bus route design and frequency setting problem for Tin Shui Wai, Hong Kong [J]. European Journal of Operational Research, 2011, 209(2): 141–155.

    Article  MATH  MathSciNet  Google Scholar 

  12. LIU Z, SHEN J, WANG H, YANG W. Regional bus timetabling model with synchronization [J]. Journal of Transportation Systems Engineering and Information Technology, 2007, 7(2): 109–112.

    Article  Google Scholar 

  13. IBARRA-ROJAS O J, RIOS-SOLIS Y A. Synchronization of bus timetabling [J]. Transportation Research Part B: Methodological, 2012, 46(5): 599–614.

    Article  Google Scholar 

  14. SALZBORN F J. Optimum bus scheduling [J]. Transportation Science, 1972, 6(2): 137–148.

    Article  Google Scholar 

  15. LI J, LARRY HEAD K. Sustainability provisions in the bus-scheduling problem [J]. Transportation Research Part D: Transport and Environment, 2009, 14(1): 50–60.

    Article  Google Scholar 

  16. SMITH B M, WREN A. A bus crew scheduling system using a set covering formulation [J]. Transportation Research Part A: General, 1988, 22(2): 97–108.

    Article  Google Scholar 

  17. CHEN C, YAN S, TSENG C. Inter-city bus scheduling for allied carriers [J]. Transportmetrica, 2010, 6(3): 161–185.

    Article  Google Scholar 

  18. DESAULNIERS G, HICKMAN M. Public transit [J]. Transportation, Handbooks in Operations Research and Management Science, 2003: 69–127.

    Google Scholar 

  19. KEPAPTSOGLOU K, KARLAFTIS M. Transit route network design problem: Review [J]. Journal of Transportation Engineering, 2009, 135(8): 491–505.

    Article  Google Scholar 

  20. SHAHEEN S A, GUZMAN S, ZHANG H. Bikesharing in europe, the americas, and asia [J]. Transportation Research Record: Journal of the Transportation Research Board, 2010, 2143(1): 159–167.

    Article  Google Scholar 

  21. LIN J, YANG T. Strategic design of public bicycle sharing systems with service level constraints [J]. Transportation research part E: logistics and transportation review, 2011, 47(2): 284–294.

    Article  Google Scholar 

  22. LIN J, YANG T, CHANG Y. A hub location inventory model for bicycle sharing system design: Formulation and solution [J]. Computers & Industrial Engineering, 2011, 65(1): 77–86.

    Article  Google Scholar 

  23. NAIR R, MILLER-HOOKS E. Fleet management for vehicle sharing operations [J]. Transportation Science, 2011, 45(4): 524–540.

    Article  Google Scholar 

  24. RAVIV T, TZUR M, FORMA I A. Static repositioning in a bike-sharing system: models and solution approaches [J]. EURO Journal on Transportation and Logistics, 2012: 1-43.

  25. CHEMLA D, MEUNIER F, WOLFLER CALVO R. Bike sharing systems: Solving the static rebalancing problem [J]. Discrete Optimization, 2012.

    Google Scholar 

  26. MARTENS K. Promoting bike-and-ride: The Dutch experience [J]. Transportation Research Part A: Policy and Practice, 2007, 41(4): 326–338.

    MathSciNet  Google Scholar 

  27. KRIZEK K J, STONEBRAKER E W. Bicycling and Transit [J]. Transportation Research Record: Journal of the Transportation Research Board, 2010, 2144(1): 161–167.

    Article  Google Scholar 

  28. PUCHER J, DILL J, HANDY S. Infrastructure, programs, and policies to increase bicycling: An international review [J]. Preventive Medicine, 2010, 50: S106–S125.

    Article  Google Scholar 

  29. LAM A Y, LI V O. Chemical-reaction-inspired metaheuristic for optimization [J]. Evolutionary Computation, IEEE Transactions on, 2010, 14(3): 381–399.

    Article  Google Scholar 

  30. XU J, LAM A Y, LI V O. Chemical reaction optimization for the grid scheduling problem [C]// In Communications (ICC), 2010 IEEE International Conference on. Cape Town: IEEE, 2010: 1–5.

    Google Scholar 

  31. YU J J, LAM A Y, LI V O. Evolutionary artificial neural network based on chemical reaction optimization [C]// In Evolutionary Computation (CEC), 2011 IEEE Congress on. New Orleans: IEEE: 2011: 2083–2090.

    Chapter  Google Scholar 

  32. LI J, PAN Q. Chemical-reaction optimization for flexible job-shop scheduling problems with maintenance activity [J]. Applied Soft Computing, 2012, 12(9): 2896–2912.

    Article  MathSciNet  Google Scholar 

  33. ALATAS B. ACROA: Artificial chemical reaction optimization algorithm for global optimization [J]. Expert Systems with Applications, 2011, 38(10): 13170–13180.

    Article  Google Scholar 

  34. PAN B, LAM A Y, LI V O. Network coding optimization based on chemical reaction optimization [C]// Global Telecommunications Conference (GLOBECOM 2011), 2011 IEEE Houston, USA: IEEE: 2011: 1–5.

    Chapter  Google Scholar 

  35. TRUONG T K, LI K, XU Y. Chemical reaction optimization with greedy strategy for the 0–1 knapsack problem [J]. Applied Soft Computing, 2013, 13(4): 1774–1780.

    Article  Google Scholar 

  36. LAM A Y, LI V O. Chemical-reaction-inspired metaheuristic for optimization [J]. Evolutionary Computation, IEEE Transactions on, 2010, 14(3): 381–399.

    Article  Google Scholar 

  37. YU J J, LI V O, LAM A Y. Sensor deployment for air pollution monitoring using public transportation system [C]// Evolutionary Computation (CEC), 2012 IEEE Congress on, Brisbane: IEEE, 2012: 1–7.

    Google Scholar 

  38. LAM A Y, LI V O. Chemical reaction optimization: A tutorial [J]. Memetic Computing, 2012, 4(1): 3–17.

    Article  Google Scholar 

  39. LAM A Y, LI V O, YU J J. Real-coded chemical reaction optimization [J]. Evolutionary Computation, IEEE Transactions on, 2012, 16(3): 339–353.

    Article  Google Scholar 

  40. DEB K, GOLDBERG D E. An investigation of niche and species formation in genetic function optimization [C]// Proceedings of the 3rd International Conference on Genetic Algorithms. Morgan Kaufmann Publishers Inc, 1989: 2–50.

    Google Scholar 

  41. ESHELMAN L J, SCHAFFER J D. Preventing premature convergence in genetic algorithms by preventing incest [C]// Proceedings of the 4th International Conference on Genetic Algorithms. San Francisco, USA: Morgan Kaufmann, 1991: 115–122.

    Google Scholar 

  42. SMITH R E, BONACINA C. Mating restriction and niching pressure: Results from agents and implications for general EC [C]// Genetic and Evolutionary Computation—GECCO 2003. Chicago: Springer, 2003: 1382–1393.

    Chapter  Google Scholar 

  43. BAR-GERA H. Transportation network test problems [EB/OC]. [2013-09-05] http://www.bgu.ac.il/~bargera/tntp/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Zhu  (朱宁).

Additional information

Foundation item: Projects(71301115, 71271150, 71101102) supported by the National Natural Science Foundation of China; Project(20130032120009) supported by Specialized Research Fund for the Doctoral Program of Higher Education of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Zhu, N. & Ma, Sf. Simultaneous optimization of transit network and public bicycle station network. J. Cent. South Univ. 22, 1574–1584 (2015). https://doi.org/10.1007/s11771-015-2674-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-015-2674-8

Key words

Navigation