Skip to main content
Log in

Noise behaviors of a closed-loop micro-electromechanical system capacitive accelerometer

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The noise of closed loop micro-electromechanical systems (MEMS) capacitive accelerometer is treated as one of the significant performance specifications. Traditional optimization of noise performance often focuses on designing large capacitive sensitivity accelerometer and applying closed loop structure to shape total noise, but different noise sources in closed loop and their behaviors at low frequencies are seldom carefully studied, especially their behaviors with different electronic parameters. In this work, a thorough noise analysis is established focusing on the four noise sources transfer functions near 0 Hz with simplified electronic parameters in closed loop, and it is found that the total electronic noise equivalent acceleration varies differently at different frequency points, such that the noise spectrum shape at low frequencies can be altered from 1/f noise-like shape to flat spectrum shape. The bias instability changes as a consequence. With appropriate parameters settings, the 670 Hz resonant frequency accelerometer can reach resolution of \(2.6 \mu g/\sqrt {Hz}\) at 2 Hz and 6 μg bias instability, and 1300 Hz accelerometer can achieve \(5 \mu g/\sqrt {Hz}\) at 2 Hz and 31 μg bias instability. Both accelerometers have flat spectrum profile from 2 Hz to 15 Hz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ROYLANCE L M, ANGELL J B. A batch fabricated silicon accelerometer [J]. IEEE Trans Electron Devices, 1979, 26(12): 1911-1917.

    Article  Google Scholar 

  2. LEMKIN M, BOSER B E. A Three-axis micromachined accelerometer with a CMOS position-sense interface and digital offset-trim electronics [J]. IEEE Journal of Solid-State Circuits, 1999, 34(4): 456-468.

    Article  Google Scholar 

  3. BERNSTEIN J, MILLER R, KELLEY W, WARD P. Low-noise MEMS vibration sensor for geophysical application [J]. Journal of Microelectromechanical Systems, 1999, 8(4): 433-438.

    Article  Google Scholar 

  4. LIU C, KENNY T W. A high-precision, wide-bandwidth micromachined tunneling accelerometer [J]. Journal of Microelectromechanical Systems, 2001, 10(3): 425-433.

    Article  Google Scholar 

  5. WU J, FEDDER G K, CARLEY L R. A low-noise low-offset capacitive sensing amplifier for a 50 -¦Ìg / Hz monolithic CMOS MEMS accelerometer [J]. IEEE Journal of Solid-State Circuits, 2004, 39(5): 722-730.

    Article  Google Scholar 

  6. CHAE J, KULAH H, NAJAFI K. A monolithic three-axis micro-g micromachined silicon capacitive accelerometer [J]. Journal of Microelectromechanical systems, 2005, 14(2): 235-242.

    Article  Google Scholar 

  7. DONG Y, KRAFT M, GOLLASCH C, REDMAN-WHITE W. A high-performance accelerometer with a fifth-order sigma-delta modulator [J]. Journal of Micromechnics and Microengineering, 2005, 15: S22-S29.

    Article  Google Scholar 

  8. AMINI B V, ABDOLVAND R, AYAZI F. A 4.5 mW closed-loop delta-sigma micro-gravity CMOS SOI accelerometer [J]. IEEE Journal of Solid-State Circuits, 2006, 41(12): 2983-2991.

    Article  Google Scholar 

  9. QU Hong-wei, FANG De-you, XIE Hui-kai. A monolithic CMOS-MEMS 3-axis accelerometer with a low-noise, low-power dual-chopper amplifier [J]. IEEE Sensor Journal, 2008, 8(9): 1511-1518.

    Article  Google Scholar 

  10. TSENG Sheng-Hsiang, LU M S C, WU Po-chang, TENG Yu-chen, Tsai Hann-huei, JUANG Ying-zong. Implementation of a monolithic capacitive accelerometer in a wafer-level 0.18 ¦Ìm CMOS MEMS process [J]. Journal of Micromechanics and Microengineering, 2012, 22(5): 1-14.

    Article  Google Scholar 

  11. TSAI Ming-han, LIU Yu-chia, FANG Wei-leun. A three-axis CMOS-MEMS accelerometer structure with vertically integrated fully differential sensing electrodes [J]. Journal of Microelecromechanical Systems, 2012, 21(6): 1329-1337.

    Article  Google Scholar 

  12. HATHI B, BALL A J, COLOMBATTI G, FERRI F, LEESE M R, TOWNER M C, WITHERS P, FULCHIGIONI M, ZARNECKI J C. Huygens HASI servo accelerometer: A review and lessons learned [J]. Planetary and Space Science, 2009, 57: 1321-1333.

    Article  Google Scholar 

  13. WILLEMENOT E, TOUBOUL P. On-ground investigation of space accelerometers noise with an electrostatic torsion pendulum [J]. Review of Scientific Instruments, 2000, 71(1): 302-309.

    Article  Google Scholar 

  14. YANG Jie, WU Wen-qi, WU Yuan-xin, LIAN Jun-xiang. An iterative calibration method for nonlinear coefficients of marine triaxial accelerometers [J]. Journal of Central South University, 2013, 20: 3103-3115.

    Article  Google Scholar 

  15. XU Tian-he, SUN Zhang-zhen, JIANG Nan, CHEN Kang-kang, LI Min. GOCE kinematic orbit adjustment for EGM validation and accelerometer calibration [J]. Journal of Central South University, 2014, 21: 2397-2403.

    Article  Google Scholar 

  16. TRUSOV A A, ZOTOV S A, SIMON B R, SHKEL A M. Silicon Accelerometer with differential frequency modulation and continuous self-calibration [C]// IEEE MEMS conference 2013. Taipei, China: IEEE Press, 2013: 29-32.

    Google Scholar 

  17. XU Rui-ze, ZHOU Sheng-li, LI W J. MEMS accelerometer based nonspecific-user hand gesture recognition [J]. IEEE Sensors Journal, 2012, 12(5): 1166-1173.

    Article  Google Scholar 

  18. IOANNIS Z, IBRAHIM S, MICHAEL K. Characterization of a mechanical motion amplifier applied to a MEMS accelerometer [J]. Journal of Microelectromechanical Systems, 2012, 21(5): 1032-1042.

    Article  Google Scholar 

  19. KULAH H, CHAE J, YAZDI N, NAJAFI K. Noise analysis and characterization of a sigma-delta capacitive microaccelerometer [J]. IEEE Journal of Solid-State Circuits, 2006, 41(2): 352-361.

    Article  Google Scholar 

  20. AALTONEN L, HALONEN K. Continuous-time interface for a micromachined capacitive accelerometer with NEA of 4 ¦Ìg and bandwidth of 300 Hz [J]. Sensors and Actuators A: Physical, 2009, 154(1): 46-56.

    Article  Google Scholar 

  21. YUSAKU Y, HIDEAKI K, HIROSHI A, HIROAKI N. A linear model based noise evaluation of a capacitive servo-accelerometer fabricated by MEMS [J]. IEICE Electronics Express, 2005, 2(6): 198-204.

    Article  Google Scholar 

  22. SAITO H, YOKOYAMA T, UCHIYAMA S. Seafloor stability monitoring by displacements calculated from acceleration waveforms obtained by a 3-component servo-accelerometer system [C]// Oceans 2006. Boston, MA, USA: IEEE Press, 2006: 1-6.

    Chapter  Google Scholar 

  23. ZHENG X D, JIN Z H, WANG Y L, LIN W J, ZHOU X Q. An in-plane low-noise accelerometer fabricated with an improved process flow [J]. Journal of Zhejiang University, Science A, 2009, 10(10): 1413-1420.

    Article  Google Scholar 

  24. ZHU H, JIN Z, HU S, LIU Y. Constant-frequency oscillation control for vibratory micro-machined gyroscope [J]. Sensors and Actuators A: Physical, 2013, 193: 193-200.

    Article  Google Scholar 

  25. IEEE Std 1293-1998 (R2008). IEEE standard specification format guide and test procedure for linear, single-axis, non-gyroscopic accelerometers [S]. 2011.

    Google Scholar 

  26. GULMAMMADOV F. Analysis, modeling and compensation of bias drift in MEMS inertial sensors [C]// 4th International conference on recent advances in space technologies. Istanbul: IEEE Press, 2009: 591-596.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-he Jin  (金仲和).

Additional information

Foundation item: Project(61404122) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Mj., Jin, Zh., Liu, Yd. et al. Noise behaviors of a closed-loop micro-electromechanical system capacitive accelerometer. J. Cent. South Univ. 22, 4634–4644 (2015). https://doi.org/10.1007/s11771-015-3014-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-015-3014-8

Key words

Navigation