Skip to main content
Log in

Fuzzy-GA based algorithm for optimal placement and sizing of distribution static compensator (DSTATCOM) for loss reduction of distribution network considering reconfiguration

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

This work presents a fuzzy based methodology for distribution system feeder reconfiguration considering DSTATCOM with an objective of minimizing real power loss and operating cost. Installation costs of DSTATCOM devices and the cost of system operation, namely, energy loss cost due to both reconfiguration and DSTATCOM placement, are combined to form the objective function to be minimized. The distribution system tie switches, DSTATCOM location and size have been optimally determined to obtain an appropriate operational condition. In the proposed approach, the fuzzy membership function of loss sensitivity is used for the selection of weak nodes in the power system for the placement of DSTATCOM and the optimal parameter settings of the DFACTS device along with optimal selection of tie switches in reconfiguration process are governed by genetic algorithm (GA). Simulation results on IEEE 33-bus and IEEE 69-bus test systems concluded that the combinatorial method using DSTATCOM and reconfiguration is preferable to reduce power losses to 34.44% for 33-bus system and to 45.43% for 69-bus system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ABDELAZIZ A, OSAMA R, EL-KHODARY S. Reconfiguration of distribution systems for loss reduction using the hyper-cube ant colony optimization algorithm [J]. IET Generation Transmission Distribution, 2012, 6(2): 176–187.

    Article  Google Scholar 

  2. CHANDRAMOHAN S, NARESH A, KUMUDINI R P, VENKATESH DEVI B. Operating cost minimization of a radial distribution system in a deregulated electricity market through reconfiguration using NSGA method [J]. International Journal of Electrical Power and Energy Systems, 2010, 32: 126–132.

    Article  Google Scholar 

  3. ESMAEILIAN H R, FADAEINEDJAD R. Distribution system efficiency improvement using network reconfiguration and capacitor allocation [J]. International Journal of Electrical Power and Energy Systems, 2015, 64: 457–468.

    Article  Google Scholar 

  4. BROWN R E. Distribution system reliability assessment and reconfiguration optimization [C]// Transmission and Distribution Conference and Exposition Conference. IEEE, 2011: 994–999.

    Google Scholar 

  5. SHIRMOHAMADDI D, HONG H W. Reconfiguration of electric distribution networks for resistive line losses reduction [J]. IEEE Transaction Power Delivery, 1989, 4(2): 1492–1498.

    Article  Google Scholar 

  6. KASHEM M A, GANAPATHY V, JAMSON G B. Network reconfiguration for enhancement of voltage stability in distribution networks [J]. IEE Proceedings Generation Transmission Distribution, 2000, 147(3): 171–175.

    Article  Google Scholar 

  7. SAHOO N C, PRASAD K. Fuzzy genetic approach for network reconfiguration [J]. International Journal of Energy Conversion Management, 2006, 47(18): 3288–3306.

    Article  Google Scholar 

  8. PRASAD K, RANJAN R, SAHOO N C, CHATURVEDI A. Optimal reconfiguration of radial distribution systems using a fuzzy mutated genetic algorithm [J]. IEEE Transaction Power Delivery, 2005, 20(2): 1211–1213.

    Article  Google Scholar 

  9. VENKATESH B, RANJAN R. Optimal radial distribution system reconfiguration using fuzzy adaptation of evolutionary programming [J]. International Journal of Electrical Power and Energy Systems, 2003, 25: 775–780.

    Article  Google Scholar 

  10. VENKATESH B, RANJAN R, GOOI H B. Optimal reconfiguration of radial distribution systems for maximize the load-ability [J]. IEEE Transaction Power System, 2004, 19(1): 260–266.

    Article  Google Scholar 

  11. DAS D. Optimal placement of capacitors in radial distribution system using a fuzzy-GA method [J]. International Journal of Electrical Power and Energy Systems, 2008, 30(6, 7): 361–367.

    Article  Google Scholar 

  12. MENDOZA F, BERNAL-AGUSTIN J L, DOMINGUEZNAVARRO J A. NSGA and SPEA applied to multi objective design of power distribution systems [J]. IEEE Transaction Power System, 2006, 21(4): 1938–1945.

    Article  Google Scholar 

  13. DAS D. Reconfiguration of distribution system using fuzzy multiobjective approach [J]. International Journal of Electrical Power and Energy Systems, 2006, 28(5): 331–338.

    Article  Google Scholar 

  14. AMANULLA B, CHAKRABARTI S, SINGH S. Reconfiguration of power distribution systems considering reliability and power loss [J]. IEEE Transaction Power Delivery, 2012, 27(2): 918–926.

    Article  Google Scholar 

  15. KAVOUSI-FARD A, AKBARI-ZADEH M. Reliability enhancement using optimal distribution feeder reconfiguration [J]. Neurocomputing, 2013, 106(1): 1–11.

    Article  Google Scholar 

  16. MENDOZA J, LOPEZ M, COELLO C, LOPEZ E. Microgenetic multi objective reconfiguration algorithm considering power losses and reliability indices for medium voltage distribution network [J]. IET Generation Transmission Distribution, 2009, 3(9): 825–840.

    Article  Google Scholar 

  17. MAZZA A, CHICCO G, RUSSO A. Optimal multi-objective distribution system reconfiguration with multi criteria decision making-based solution ranking and enhanced genetic operators [J]. International Journal of Electrical Power and Energy Systems, 2014, 54(1): 255–267.

    Article  Google Scholar 

  18. WU Y, LEE C, LIU L, TSAI S. Study of reconfiguration for the distribution system with distributed generators [J]. IEEE Transaction Power Delivery, 2010, 25(3): 1678–1685.

    Article  Google Scholar 

  19. RAJARAM R, SATHISH KUMAR K, RAJASEKAR N. Power system reconfiguration in a radial distribution network for reducing losses and to improve voltage profile using modified plant growth simulation algorithm with Distributed Generation (DG) [J]. Energy Reports, 2015, 1: 116–122.

    Article  Google Scholar 

  20. RAO S, RAVINDRA K, SATISH K. Power loss minimization in distribution system using network reconfiguration in the presence of distributed generation [J]. IEEE Transaction Power System, 2013, 28(1): 317–325.

    Article  Google Scholar 

  21. GUAN Wan-lin, TAN Yang-hong, ZHANG Hai-xia, SONG Jian-li. Distribution system feeder reconfiguration considering different model of DG sources [J]. International Journal of Electrical Power and Energy Systems, 2015, 68: 210–221.

    Article  Google Scholar 

  22. OLAMAEI J, NIKNAM T, GHAREHPETIAN G. Application of particle swarm optimization for distribution feeder reconfiguration considering distributed generators [J]. Applied Mathematics and Computing, 2008, 201(1, 2): 575–586.

    MathSciNet  MATH  Google Scholar 

  23. ESMAEILIAN H R, FADAEINEDJAD R. Distribution system efficiency improvement using network reconfiguration and capacitor allocation [J]. International Journal of Electrical Power and Energy Systems, 2015, 64: 457–468.

    Article  Google Scholar 

  24. FARAHANI V, VAHIDI B, ABYANEH H. Reconfiguration and capacitor placement simultaneously for energy loss reduction based on an improved reconfiguration method [J]. IEEE Transaction Power Systems, 2011, 2(5): 621–631.

    Google Scholar 

  25. OLIVEIRA L, CARNEIRO S, de OLIVEIRA E, PEREIRA J, SILVA I, COSTAI J. Optimal reconfiguration and capacitor allocation in radial distribution systems for energy losses minimization [J]. International Journal of Electrical Power and Energy Systems, 2010, 32(8): 840–848.

    Article  Google Scholar 

  26. CHANG C. Reconfiguration and capacitor placement for loss reduction of distribution systems by ant-colony search algorithm [J]. IEEE Transaction Power System, 2008, 23(4): 1747–1755.

    Article  Google Scholar 

  27. CHAN K, KARA A, DAEHLER P, GUAY J, TINGGREN R. Innovative system solutions for power quality enhancement [J]. IEEE Transaction Power Delivery, 1999, 3: 4–12.

    Google Scholar 

  28. GHOSH A, LEDWICH G. Power quality enhancement using custom power devices [M]. New York: Kluwer Academic Publishers, 2002.

    Book  Google Scholar 

  29. JAZEBI S, HOSSEINIAN SH, VAHIDI B. DSTATCOM allocation in distribution networks considering reconfiguration using differential evolution algorithm [J]. Energy Conversion and Management, 2011, 52: 2777–2783.

    Article  Google Scholar 

  30. BAGHERI TOLABI H, MOHD HASAN A, RIZWAN M. Simultaneous reconfiguration, optimal placement of DSTATCOM, and photovoltaic array in a distribution system based on fuzzy-ACO approach [J]. IEEE Transactions on Sustainable Energy, 2015, 6(1): 210–218.

    Article  Google Scholar 

  31. TAHER S A, AFSARI S A. Optimal location and sizing of DSTATCOM in distribution systems by immune algorithm [J]. International Journal of Electrical Power and Energy Systems, 2014, 60: 34–44.

    Article  Google Scholar 

  32. BAGHERINASAB A, ZADEHBAGHERI M, SAIFULNIZAM A K H, GANDOMKAR M, NAZIHA A A. Optimal placement of D-STATCOM using hybrid genetic and ant colony algorithm to losses reduction [J]. IJAPE: International Journal of Applied Power Engineering, 2013, 2(2): 53–60.

    Article  Google Scholar 

  33. CHAITHRA C, PADMAJA K. Optimum placement of D-STATCOM using firefly algorithm for enhancing power quality [J]. IJARCCE: International Journal of Advanced Research in Computer and Communication Engineering, 2015, 4(6): 20–24.

    Google Scholar 

  34. SALMAN N, MOHAMED A, SHAREEF H. Reliability improvement in distribution systems by optimal placement of DSTATCOM using binary gravitational search algorithm [J]. Przegl Ad Elektrotechniczny: Electrical Review, 2012, 88: 295–299.

    Google Scholar 

  35. DEVI S, GEETHANJALI M. Optimal location and sizing determination of distributed generation and DSTATCOM using particle swarm optimization algorithm [J]. International Journal of Electrical Power and Energy Systems, 2014, 62: 562–570.

    Article  Google Scholar 

  36. DEVABALAJI K R, RAVI K. Optimal size and sitting of multiple DG and DSTATCOM in radial distribution system using bacterial foraging optimization algorithm [J]. Ain Shams Engineering Journal, 2015, 24: 124–129.

    Google Scholar 

  37. BLAZIC B, PAPIC I. A new mathematical model and control system of DSTATCOM for operation under unbalanced conditions [J]. Electric Power System Research, 2004, 72(3): 279–287.

    Article  Google Scholar 

  38. HINGORANI N. Introducing custom power [J]. IEEE Spectrum, 1995, 32(6): 41–48.

    Article  Google Scholar 

  39. NILSSON S. Special application consideration for custom power systems [C]// IEEE Conference Power Engineering Society. New York: IEEE, 1999, 2: 1127–1130.

    Google Scholar 

  40. GHOSH S, DAS D. Method for load-flow solution of radial distribution networks [J]. IEE Proceedings Generation Transmission Distribution, 1999, 146(6): 641–648.

    Article  Google Scholar 

  41. HOSSEINI M, SHAYANFAR HA, FOTUHI M. Modeling of series and shunt distribution facts devices in distribution load flow [J]. Journal Electrical System, 2008, 4(4): 1–12.

    Google Scholar 

  42. ACHA E, FUERTE-ESQUIVEL C R, AMBRIZ-PEREZ H, ANGELES-CAMACHO C. FACTS modeling and simulation in power networks [M]. New York: Wiley, 2004.

    Book  Google Scholar 

  43. YANG Z, SHEN C, CROW M L, ZHANG L. An improved STATCOM model for power flow analysis [C]// Power Engineering Society Summer Meeting, 2000, 2: 1121–1126.

    Google Scholar 

  44. BHATTACHARYYA B, KUMAR GUPTA V. Fuzzy based evolutionary algorithm for reactive power optimization with FACTS devices [J]. International Journal of Electrical Power and Energy Systems, 2014, 61: 39–47.

    Article  Google Scholar 

  45. TABATABAEI S M, VAHIDI B. Bacterial foraging solution based fuzzy logic decision for optimal capacitor allocation in radial distribution system [J]. Electric Power Systems Research, 2016, 81: 1045–1050.

    Article  Google Scholar 

  46. ZHOU Ji-cheng, YAN Jian-wei, TIAN Li-xia. Influence of rapid process on the structure and properties of Ni-Cr thin-films fabricated by ion beam sputtering [J]. Journal of Central South University: Science and Technology, 2006, 37(5): 837–840. (in Chinese)

    Google Scholar 

  47. BARAN M E, WU F F. Optimal capacitor placement on radial distribution systems [J]. IEEE Transaction Power Delivery, 1989, 4(1): 725–732.

    Article  Google Scholar 

  48. BARAN M E, WU F F. Network reconfiguration in distribution systems for loss reduction and load balancing [J]. IEEE Transaction Power Delivery, 1989, 4(2): 1401–1407.

    Article  Google Scholar 

  49. SAHOO N C, PRASAD K. A fuzzy genetic approach for network reconfiguration for enhance voltage stability in radial distribution systems [J]. Energy Conversion and Management, 2006, 47: 3288–3306.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by Borujerd Branch, Islamic Azad University Iran. The authors would like to acknowledge staffs of University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mohammadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, M., Abasi, M. & Rozbahani, A.M. Fuzzy-GA based algorithm for optimal placement and sizing of distribution static compensator (DSTATCOM) for loss reduction of distribution network considering reconfiguration. J. Cent. South Univ. 24, 245–258 (2017). https://doi.org/10.1007/s11771-017-3425-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-017-3425-9

Key words

Navigation