Skip to main content
Log in

Industrial wastes applications for alkalinity regulation in bauxite residue: A comprehensive review

工业废弃物对赤泥碱性调控的应用研究进展

  • Review
  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Bauxite residue is a highly alkaline material generated from the production of alumina in which bauxite is dissolved in caustic soda. Approximately 4.4 billion tons of bauxite residues are either stockpiled or landfilled, creating environmental risks either from the generation of dust or migration of filtrates. High alkalinity is the critical factor restricting complete utilization of bauxite residues, whilst the application of alkaline regulation agents is costly and difficult to apply widely. For now, current industrial wastes, such as waste acid, ammonia nitrogen wastewater, waste gypsum and biomass, have become major problems restricting the development of the social economy. Regulation of bauxite residues alkalinity by industrial waste was proposed to achieve ‘waste control by waste’ with good economic and ecological benefits. This review will focus on the origin and transformation of alkalinity in bauxite residues using typical industrial waste. It will propose key research directions with an emphasis on alkaline regulation by industrial waste, whilst also providing a scientific reference point for their potential use as amendments to enhance soil formation and establish vegetation on bauxite residue disposal areas (BRDAs) following large-scale disposal.

摘要

赤泥是氧化铝工业生产过程中产生的强碱性废弃物,其碱性是制约赤泥资源化处置的主要影响 因子。赤泥脱碱研究工作已开展数十年,但因技术经济性差始终未能实践应用。采用工业废弃物调控 赤泥碱性既可大量减少废物的处置费用,也可产生良好的生态环境效益。论文在综述赤泥碱性来源以 及工业废弃物处置方式的基础上,提出了“以废治废”的研究思路,探讨了赤泥碱性调控的瓶颈问题, 阐述了典型工业废弃物(废气、废水和废渣)对赤泥碱性的转化机制,指出了应用工业废弃物改良赤 泥碱性研究的重点发展方向,这将为赤泥的土壤化处置和堆场的生态修复实践提供科学基础。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. KONG Xiang-feng, LI Meng, XUE Sheng-guo, HARTLEY W, CHEN Cheng-rong, WU Chuan, LI Xiao-fei, LI Yi-wei. Acid transformation of bauxite residue: Conversion of its alkaline characteristics [J]. Journal of Hazardous Materials, 2017, 324: 382–390. DOI: 10.1016/j.jhazmat.2016.10.073.

    Article  Google Scholar 

  2. XU Bing, SMITH P, WINGATE C, SILVA L D. The effect of calcium and temperature on the transformation of sodalite to cancrinite in bayer digestion [J]. Hydrometallurgy, 2010, 105: 75–81. DOI: 10.1016/j.hydromet.2010.07.010.

    Article  Google Scholar 

  3. ZHU Feng, ZHOU Jia, XUE Sheng-guo, HARTLEY W, WU Chuan, GUO Ying. Aging of bauxite residue in association of regeneration: A comparison of methods to determine aggregate stability & erosion resistance [J]. Ecological Engineering, 2016, 92: 47–54. DOI: 10.1016/j.ecoleng.2016.03.025.

    Article  Google Scholar 

  4. SANTINI T C, KERR J L, WARREN L A. Microbiallydriven strategies for bioremediation of bauxite residue [J]. Journal of Hazardous Materials, 2015, 293: 131–157. DOI: 10.1016/j.jhazmat.2015.03.024.

    Article  Google Scholar 

  5. ZHU Xiao-bo, LI Wang, GUAN Xue-mao. An active dealkalization of red mud with roasting and water leaching [J]. Journal of Hazardous Materials, 2015, 286: 85–91. DOI: 10.1016/j.jhazmat.2014.12.048.

    Article  Google Scholar 

  6. POWER G, GRAFE M, KLAUBER C. Bauxite residue issues: I. Current management, disposal and storage practices [J]. Hydrometallurgy, 2011, 108: 33–45. DOI: 10.1016/j.hydromet.2011.02.006.

    Google Scholar 

  7. USGS (United States Geological Survey). Mineral commodity summaries: Bauxite and alumina [R]. Washington: United States Government Printing Office, 2016.

    Google Scholar 

  8. PEPPER R A, COUPERTHWAITE S J, MILLAR G J. Comprehensive examination of acid leaching behaviour of mineral phases from red mud: Recovery of Fe, Al, Ti, and Si [J]. Minerals Engineering, 2016, 99: 8–18. DOI: 10.1016/j.mineng.2016.09.012.

    Article  Google Scholar 

  9. RENFORTH P, MAYES W M, JARVIS A P, BURKE I T, MANNING D A C, GRUIZ K. Contaminant mobility and carbon sequestration downstream of the Ajka (Hungary) red mud spill: The effects of gypsum dosing [J]. Science of the Total Environment, 2012, 421–422: 253–259. DOI: 10.1016/j.scitotenv.2012.01.046.

    Article  Google Scholar 

  10. COURTNEY R, KIRWAN L. Gypsum amendment of alkaline bauxite residue-plant available aluminium and implications for grassland restoration [J]. Ecological Engineering, 2012, 42: 279–282. DOI: 10.1016/j.ecoleng. 2012.02.025.

    Article  Google Scholar 

  11. ZHU Feng, LIAO Jia-xin, XUE Sheng-guo, HARTLEY W, ZOU Qi, WU Hao. Evaluation of aggregate microstructures following natural regeneration in bauxite residue as characterized by synchrotron-based X-ray micro-computed tomography [J]. Science of the Total Environment, 2016, 573: 155–163. DOI: 10.1016/j.scitotenv.2016.08.108.

    Article  Google Scholar 

  12. DING Xu, XU Guang, KIZIL M, ZHOU Wei, GUO Xing. Lignosulfonate treating bauxite residue dust pollution: Enhancement of mechanical properties and wind erosion behavior [J]. Water, Air, & Soil Pollution, 2018, 229: 214. DOI: 10.1007/s11270-018-3876-0.

    Article  Google Scholar 

  13. DING Xu, XU Guang, ZHOU Wei, KURUPPU M. Effect of synthetic and natural polymers on reducing bauxite residue dust pollution [J]. Environmental Technology, 2018, 1–10. DOI:10.1080/09593330.2018. 1505963.

    Google Scholar 

  14. XUE Sheng-guo, KONG Xiang-feng, ZHU Feng, HARTLEY W, LI Xiao-fei, LI Yi-wei. Proposal for management and alkalinity transformation of bauxite residue in China [J]. Environmental Science and Pollution Research, 2016, 23: 12822–12834. DOI: 10.1007/s11356-016-6478-7.

    Article  Google Scholar 

  15. GELENCSER A, KOVATS N, TUROCZI B, ROSTASI B, HOFFER A, IMRE K, NYIRO-KOSA I, CSAKBERENYIMALASICS D, TOTH A, CZITROVSZKY A, NAGY A, NAGY S, ACS A, KOVACS A, FERINCZ A, HARTYANI Z, POSFAI M. The red mud accident in Ajka (Hungary): Characterization and potential health effects of fugitive dust [J]. Environmental Science & Technology, 2011, 45: 1608–1615. DOI: 10.1021/es104005r.

    Article  Google Scholar 

  16. ZHU Feng, HUANG Nan, XUE Sheng-guo, HARTLEY W, LI Yi-wei, ZOU Qi. Effects of binding materials on microaggregate size distribution in bauxite residues [J]. Environmental Science and Pollution Research, 2016, 23: 23867–23875. DOI: 10.1007/s11356-016-7626-9.

    Article  Google Scholar 

  17. PONTIKES Y, ANGELOPOULOS G N. Bauxite residue in cement and cementitious applications: Current status and a possible way forward [J]. Resources Conservation and Recycling, 2013, 73: 53–63. DOI: 10.1016/j.resconrec.2013. 01.005.

    Article  Google Scholar 

  18. YANG Shao, ZHANG Yi, YU Jie, HUANG Tai, TANG Qi, CHU P K, QI Lei. Multi-functional honeycomb ceramic materials produced from bauxite residues [J]. Materials & Design, 2014, 59: 333–338. DOI: 10.1016/j.matdes.2014.02.061.

    Article  Google Scholar 

  19. SHI Li, PENG Xian, LUAN Zhao, WEI Ning, WANG Qi, ZHAO Ying. Use of activated red mud to remove phosphate and heavy metals from the effluent of biologically treated swine wastewater [J]. Acta Scientiae Circumstantiae, 2009, 29(11): 2282–2288. (in Chinese)

    Google Scholar 

  20. SAMOUHOS M, TAXIARCHOU M, TSAKIRIDIS P E, POTIRIADIS K. Greek “red mud” residue: A study of microwave reductive roasting followed by magnetic separation for a metallic iron recovery process [J]. Journal of Hazardous Materials, 2013, 254–255: 193–205. DOI: 10.1016/j.jhazmat.2013.03.059.

    Article  Google Scholar 

  21. BHATNAGAR A, VILAR V J P, BOTELHO C M S, BOAVENTURA R A R. A review of the use of red mud as adsorbent for the removal of toxic pollutants from water and wastewater [J]. Environmental Technology, 2011, 32: 231–249. DOI: 10.1080/09593330.2011.560615.

    Article  Google Scholar 

  22. ZOU Qi, AN Wen, WU Chuan, LI Wai-chin, FU An-qing, XIAO Rui-yang, CHEN Hui-kang, XUE Sheng-guo. Red mud–modified biochar reduces soil arsenic availability and changes bacterial composition [J]. Environmental Chemistry Letters, 2018, 16(3): 615–622.

    Article  Google Scholar 

  23. KAWAMURA M, TAKEUCHI K, SUGIYAMA A. Mechanisms of expansion of mortars containing reactive aggregate in NaCl solution [J]. Cement and Concrete Research, 1994, 24: 621–632. DOI: 10.1016/0008-8846(94)90186-4.

    Article  Google Scholar 

  24. LINDGARD J, THOMAS M D A, SELLEVOLD E J, PEDERSEN B, ANDIÇ-ÇAKIR O, JUSTNES H, RONNING T F. Alkali–silica reaction (ASR)—Performance testing: Influence of specimen pre-treatment, exposure conditions and prism size on alkali leaching and prism expansion [J]. Cement and Concrete Research, 2013, 53: 68–90. DOI: 10.1016/j.cemconres.2013.05.017.

    Article  Google Scholar 

  25. HUANG Ling, LI Yi-wei, XUE Sheng-guo, ZHU Feng, WU Chuan, WANG Qiong. Salt composition changes in different stacking ages of bauxite residue [J]. The Chinese Journal of Nonferrous Metals, 2016, 26(11): 2433–2439. (in Chinese)

    Google Scholar 

  26. LIU Wan, CHEN Xiang, LI Wang, YU Yan, YAN Kun. Environmental assessment, management and utilization of red mud in China [J]. Journal of Cleaner Production, 2014, 84: 606–610. DOI: 10.1016/j.jclepro.2014.06.080.

    Article  Google Scholar 

  27. SANTINI T C, HINZ C, RATE A W, CARTER C M, GILKES R J. In situ neutralisation of uncarbonated bauxite residue mud by cross layer leaching with carbonated bauxite residue mud [J]. Journal of Hazardous Materials, 2011, 194: 119–127. DOI: 10.1016/j.jhazmat.2011.07.090.

    Article  Google Scholar 

  28. KHAITAN S, DZOMBAK D A, LOWRY G V, FAN M H, VIDIC R. Mechanisms of neutralization of bauxite residue by carbon dioxide [J]. Journal of Environmental Engineering, 2009, 135: 433–438. DOI: 10.1061/(ASCE)EE.1943-7870.0000010.

    Article  Google Scholar 

  29. SANTINI T C, FEY M V. Synthesis of hydrotalcite by neutralization of bauxite residue mud leachate with acidic saline drainage water [J]. Applied Clay Science, 2012, 55: 94–99. DOI: 10.1016/j.clay.2011.10.011.

    Article  Google Scholar 

  30. ZHANG Yi, WANG Xin, LV Feng, ZHOU Feng, TONG Wang, HU Ying, ZHANG An, LU Rong. Study progress of alkali removal from red mud and novel functional materials [J]. Chinese Journal of Environmental Engineering, 2016, 10(7): 3383–3390. (in Chinese)

    Google Scholar 

  31. BURKE I T, PEACOCK C L, LOCKWOOD C L, STEWART D I, MORTIMER R J G, WARD M B, RENFORTH P, GRUIZ K, MAYES W M. Behavior of aluminum, arsenic, and vanadium during the neutralization of red mud leachate by HCl, gypsum, or seawater [J]. Environmental Science & Technology, 2013, 47: 6527–7535. DOI: 10.1021/es4010834.

    Article  Google Scholar 

  32. KISHIDA M, HARATO T, TOKORO C, OWADA S. In situ remediation of bauxite residue by sulfuric acid leaching and bipolar-membrane electrodialysis [J]. Hydrometallurgy, 2016, 170: 58–67. DOI: 10.1016/j.hydromet.2016.04.012.

    Article  Google Scholar 

  33. HANAHAN C, MCCONCHIE D, POHL J, CREELMAN R, CLARK M, STOCKSIEK C. Chemistry of seawater neutralization of bauxite refinery residues (red mud) [J]. Environmental Engineering Science, 2004, 21: 125–138. DOI: 10.1089/109287504773087309.

    Article  Google Scholar 

  34. MENZIES N W, FULTON I M, MORRELL W J. Seawater neutralization of alkaline bauxite residue and implications for revegetation [J]. Journal of Environmental Quality, 2004, 33: 1877–1884. DOI: 10.2134/jeq2004.1877.

    Article  Google Scholar 

  35. XUE Sheng-guo, ZHU Feng, KONG Xiang-feng, WU Chuan, HUANG Ling, HUANG Nan, WILLIAM H. A review of the characterization and revegetation of bauxite residues (red mud) [J]. Environmental Science and Pollution Research, 2016, 23: 1120–1132. DOI: 10.1007/s11356-015-4558–8.

    Article  Google Scholar 

  36. COURTNEY R G, TIMPSON J P. Nutrient status of vegetation grown in alkaline bauxite processing residue amended with gypsum and thermally dried sewage sludge–A two year field study [J]. Plant and Soil, 2004, 266: 187–194. DOI: 10.1007/s11104-005-0872-0.

    Article  Google Scholar 

  37. BARBHUIYA S A, BASHEER P A M, CLARK M W, RANKIN G I B. Effects of seawater-neutralised bauxite refinery residue on properties of concrete [J]. Cement and Concrete Composites, 2011, 33: 668–679. DOI: 10.1016/j.cemconcomp.2011.03.010.

    Article  Google Scholar 

  38. TUAZON D, CORDER G D. Life cycle assessment of seawater neutralised red mud for treatment of acid mine drainage [J]. Resources Conservation and Recycling, 2008, 52: 1307–1314. DOI: 10.1016/j.resconrec.2008.07.010.

    Article  Google Scholar 

  39. ZHANG Ran, ZHENG Shi, MA Shu, ZHANG Yi. Recovery of alumina and alkali in Bayer red mud by the formation of andradite-grossular hydrogarnet in hydrothermal process [J]. Journal of Hazardous Materials, 2011, 189: 827–835. DOI: 10.1016/j.jhazmat.2011.03.004.

    Article  Google Scholar 

  40. LIANG Wen, COUPERTHWAITE S, KAUR G, YAN Cheng, JOHNSTONE D W, MILLAR G J. Effect of strong acids on red mud structural and fluoride adsorption properties [J]. Journal of Colloid and Interface Science, 2014, 423: 158–165. DOI: 10.1016/j.jcis.2014.02.019.

    Article  Google Scholar 

  41. SUSHIL S, BATRA V S. Modification of red mud by acid treatment and its application for CO removal [J]. Journal of Hazardous Materials, 2012, 203: 264–273. DOI: 10.1016/j.jhazmat.2011.12.007.

    Article  Google Scholar 

  42. DOYE I, DUCHESNE J. Neutralisation of acid mine drainage with alkaline industrial residues: Laboratory investigation using batch-leaching tests [J]. Applied Geochemistry, 2003, 18: 1197–1213. DOI: 10.1016/S0883-2927(02)00246-9.

    Article  Google Scholar 

  43. SI Chun, MA Ying, LIN Chu. Red mud as a carbon sink: Variability, affecting factors and environmental significance [J]. Journal of Hazardous Materials, 2013, 244–245: 54–59. DOI: 10.1016/j.jhazmat.2012.11.024.

    Article  Google Scholar 

  44. BODOR M, SANTOS R M, GERVEN T V, VLAD M. Recent developments and perspectives on the treatment of industrial wastes by mineral carbonation—A review [J]. Central European Journal of Engineering, 2013, 3: 566–584. DOI: 10.2478/s13531-013-0115-8.

    Google Scholar 

  45. PERRY K W, RUSSELL A S. Advances and prospects in alumina technology [J]. JOM, 1982, 34: 48–53. DOI: 10.1007/BF03338119.

    Article  Google Scholar 

  46. LIU Yong, LIN Chu, WU Yong. Characterization of red mud derived from a combined Bayer process and bauxite calcination method [J]. Journal of Hazardous Materials, 2007, 146: 255–261. DOI: 10.1016/j.jhazmat.2006.12.015.

    Article  Google Scholar 

  47. LIU Wan, YANG Jia, XIAO Bo. Review on treatment and utilization of bauxite residues in China [J]. International Journal of Mineral Processing, 2009, 93: 220–231. DOI: 10.1016/j.minpro.2009.08.005.

    Article  Google Scholar 

  48. XU Bing, SMITH P, SILVA L D. The Bayer digestion behaviour of transition aluminas formed from roasted gibbsite [J]. International Journal of Mineral Processing, 2013, 122: 22–28. DOI: 10.1016/j.minpro.2013.04.003.

    Article  Google Scholar 

  49. XU Guang, DING Xu, KURUPPU M, ZHOU Wei, BISWAS W. Research and application of non-traditional chemical stabilizers on bauxite residue (red sand) dust control, a review [J]. Science of the Total Environment, 2018, 616: 1552–1565. DOI: 10.1016/j.scitotenv.2017.10.158.

    Article  Google Scholar 

  50. BEARDEN B N, PETERSEN L. Influence of arbuscular mycorrhizal fungi on soil structure and aggregate stability of a vertisol [J]. Plant and Soil, 2000, 218: 173–183. DOI: 10.1023/a:1014923911324.

    Article  Google Scholar 

  51. HAMDY M K, WILLIAMS F S. Bacterial amelioration of bauxite residue waste of industrial alumina plants [J]. Journal of Industrial Microbiology & Biotech, 2001, 27: 228–233. DOI: 10.1038/sj.jim.7000181.

    Article  Google Scholar 

  52. PARADIS M, DUCHESNE J, LAMONTAGNE A, ISABEL D. Long-term neutralisation potential of red mud bauxite with brine amendment for the neutralisation of acidic mine tailings [J]. Applied Geochemistry, 2007, 22: 2326–2333. DOI: 10.1016/j.apgeochem.2007.04.021.

    Article  Google Scholar 

  53. SURYAVANSHI A K, SCANTLEBURY J D, LYON S B. Mechanism of Friedel’s salt formation in cements rich in tri-calcium aluminate [J]. Cement and Concrete Research, 1996, 26: 717–727. DOI: 10.1016/S0008-8846(96)85009-5.

    Article  Google Scholar 

  54. PAN Xiao, YU Hai, TU Gan. Reduction of alkalinity in bauxite residue during Bayer digestion in high-ferrite diasporic bauxite [J]. Hydrometallurgy, 2015, 151: 98–106. DOI: 10.1016/j.hydromet.2014.11.015.

    Article  Google Scholar 

  55. WHITTINGTON B I, FLETCHER B L, TALBOT C. The effect of reaction conditions on the composition of desilication product (DSP) formed under simulated Bayer conditions [J]. Hydrometallurgy, 1998, 49: 1–22. DOI: 10.1016/S0304-386X(98)00021-8.

    Article  Google Scholar 

  56. MARTIN M A, FORTE G, OSTAP S, SEE J. The Mineralogy of Bauxite for Producing Smelter-Grade Alumina [J]. JOM, 2001, 53: 36–40. DOI: 10.1007/s11837-001-0011-1.

    Article  Google Scholar 

  57. GRÄFE M, POWER G, KLAUBER C. Bauxite residue issues: III. Alkalinity and associated chemistry [J]. Hydrometallurgy, 2011, 108: 60–79. DOI: 10.1016/j.hydromet.2011.02.004.

    Google Scholar 

  58. KONG Xiang-feng, TIAN Tao, XUE Sheng-guo, HARTLEY W, HUANG Long, WU Chuan, LI Chu. Development of alkaline electrochemical characteristics demonstrates soil formation in bauxite residue undergoing natural rehabilitation [J]. Land Degradation & Development, 2018, 29: 58–67. DOI: 10.1002/ldr.2836.

    Article  Google Scholar 

  59. LI Xiao-fei, YE Yu, XUE Sheng-guo, JIANG Jun, WU Chuan, KONG Xiang-feng, HARTLEY W, LI Yi-wei. Leaching optimization and dissolution behavior of alkaline anions in bauxite residue [J]. Transactions of Nonferrous Metals Society of China, 2018, 28(6): 1248–1255. DOI: 10.1016/S1003-6326(18)64763-6.

    Article  Google Scholar 

  60. KONG Xiang JIANG Xing-xing, XUE Sheng-guo, HUANG Ling, HARTLEY W, WU Chuan, LI Xiao-bin. Migration and distribution of saline ions in bauxite residue during water leaching [J]. Transactions of Nonferrous Metals Society of China, 2018, 28(3): 534–541. DOI: 10.1016/S1003-6326(18)64686-2.

    Article  Google Scholar 

  61. CASTALDI P, SILVETTI M, SANTONA L, ENZO S, MELIS P. XRD, FTIL and thermal analysis of bauxite ore-Processing waste (red mud) exchanged with heavy metals [J]. Clays and Clay Minerals, 2008, 56: 461–469. DOI: 10.1346/ccmn.2008.0560407.

    Article  Google Scholar 

  62. ZHANG Kun, HU Hui, ZHANG Li, CHEN Qi. Surface charge properties of red mud particles generated from Chinese diaspore bauxite [J]. Transactions of Nonferrous Metals Society of China, 2008, 18: 1285–1289. DOI: 10.1016/S1003-6326(08)60218-6.

    Article  Google Scholar 

  63. XUE Sheng-guo, LI Xiao-fei, KONG Xiang-feng, WU Chuan, LI Yi-wei, LI Meng, LI Chu. Alkaline regulation of bauxite residue: A comprehensive review [J]. Acta Scientiae Circumstantiae, 2017, 37: 2815–2828. (in Chinese)

    Google Scholar 

  64. ATASOY A. An investigation on characterization and thermal analysis of the Aughinish red mud [J]. Journal of Thermal Analysis & Calorimetry, 2005, 81: 357–361. DOI: 10.1007/s10973-005-0792-5.

    Article  Google Scholar 

  65. ATASOY A. The comparison of the bayer process wastes on the base of chemical and physical properties [J]. Journal of Thermal Analysis & Calorimetry, 2007, 90: 153–158. DOI: 10.1007/s10973-005-7671-y.

    Article  Google Scholar 

  66. ALP A, GORAL M S. The effects of the additives, calcination and leach conditions for alumina production from red mud [J]. Scandinavian Journal of Metallurgy, 2003, 32: 301–305. DOI: 10.1111/j.1600-0692.2003.00656.x.

    Article  Google Scholar 

  67. SAMAL S, RAY A K, BANDOPADHYAY A. Proposal for resources, utilization and processes of red mud in India—A review [J]. International Journal of Mineral Processing, 2013, 118: 43–55. DOI: 10.1016/j.minpro.2012.11.001.

    Article  Google Scholar 

  68. NEWSON T, DYER T, ADAM C, SHARP S. Effect of structure on the geotechnical properties of bauxite residue [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132: 143–151. DOI: 10.1061/(ASCE)1090-0241(2006)132:2(143).

    Article  Google Scholar 

  69. PETROPULU M O, LYBEROPULU T, OCHSENKUHN K M, PARISSAKISA G. Recovery of lanthanides and yttrium from red mud by selective leaching [J]. Analytica Chimica Acta, 1996, 319: 249–254. DOI: 10.1016/0003-2670(95)00486-6.

    Article  Google Scholar 

  70. KONG Xiang-feng, GUO Ying, XUE Sheng-guo, HARTLEY W, WU Chuan, YE Yu, CHENG Qing. Natural evolution of alkaline characteristics in bauxite residue [J]. Journal of Cleaner Production, 2017, 143: 224–230. DOI: 10.1016/j.jclepro.2016.12.125.

    Article  Google Scholar 

  71. TAI Jun, ZHANG Wei, CHE Yue, FENG Di. Municipal solid waste source-separated collection in China: A comparative analysis [J]. Waste Management, 2011, 31: 1673–1682. DOI: 10.1016/j.wasman.2011.03.014.

    Article  Google Scholar 

  72. CHAABAN M A. Hazardous waste source reduction in materials and processing technologies [J]. Journal of Materials Processing Technology, 2001, 119: 336–343. DOI: 10.1016/S0924-0136(01)00920-7.

    Article  Google Scholar 

  73. TWIDWELL L G, HWANG J R, DUFRESNE R E. Industrial waste disposal. Excess sulfuric acid neutralization with copper smelter slag [J]. Environmental Science and Technology, 1976, 10: 687–691. DOI: 10.1021/es60118a004.

    Google Scholar 

  74. WANG Yun, YANG Gang, ZHANG Jin. Novel process for sodium elimination from red mud of alumina production [J]. Nonferrous Metals, 2010, 62(3): 61–64. (in Chinese)

    Google Scholar 

  75. SNYDER C S, BRUULSEMA T W, JENSEN T L, FIXEN P E. Review of greenhouse gas emissions from crop production systems and fertilizer management effects [J]. Agriculture Ecosystems & Environment, 2009, 133: 247–266. DOI: 10.1016/j.agee.2009.04.021.

    Article  Google Scholar 

  76. WANG Zhi, HAN Min, ZHANG Yi, ZHOU Feng. Study on the dealkalization technics of Bayerprocess red mud with CO2 by carbonation [J]. Bulletin of the Chinese Ceramic Society, 2013, 32(9): 1851–1861. (in Chinese)

    Google Scholar 

  77. NAN Xiang, ZHANG Ting, WU Yi, DOU Zhi. A study on absorption of low-concentration SO2 by bayer red mud [J]. Journal of Northeastern University, 2010, 31(7): 986–989. (in Chinese)

    Google Scholar 

  78. SINGH M, GARG M. Cementitious binder from fly ash and other industrial wastes [J]. Cement and Concrete Research, 1999, 29: 309–314. DOI: 10.1016/S0008-8846(98)00210-5.

    Article  Google Scholar 

  79. BUDINOVA T, SAVOVA D, TSYNTSARSKI B, ANIA C O, CABAL B, PARRA, J B, PETROV N. Biomass waste-derived activated carbon for the removal of arsenic and manganese ions from aqueous solutions [J]. Applied Surface Science, 2012, 30: 999–1000. DOI: 10.1016/j.apsusc.2008.12.013.

    Google Scholar 

  80. XU Jing, LU Shu, FU Dan. Recovery of hydrochloric acid from the waste acid solution by diffusion dialysis [J]. Journal of Hazardous Materials, 2009, 165: 832–837. DOI: 10.1016/j.jhazmat.2008.10.064.

    Article  Google Scholar 

  81. JEONG J, KIM M S, KIM B S, KIM S K, KIM W B, LEE J C. Recovery of H2SO4 from waste acid solution by a diffusion dialysis method [J]. Journal of Hazardous Materials, 2005, 124: 230–235. DOI: 10.1016/j.jhazmat.2005.05.005.

    Article  Google Scholar 

  82. WANG Guang, QIANG Min, WANG Guang, HE Xuan, LIU Zhi, WEI Song, DU Gong. Experimental study on Ca2+ and Mg2+ removal from circulating water with alkaline wastewater from thermal power plant [J]. Journal of Wuhan Yejin Univeristy of Science and Technology, 2001, 24(2): 138–144. (in Chinese)

    Google Scholar 

  83. KRUTHIKA N L, KARTHIKA S, RAJU G B, PRABHAKAR S. Efficacy of electrocoagulation and electrooxidation for the purification of wastewater generated from gelatin production plant [J]. Journal of Environmental Chemical Engineering, 2013, 1: 183–188. DOI: 10.1016/j.jece.2013.04.017.

    Article  Google Scholar 

  84. GÓRSKA J S, CICHON A, MIKSCH K. Nitrogen removal from wastewater with high ammonia nitrogen concentration via shorter nitrification and denitrification [J]. Waster Science and Technology, 1997, 36: 73–78. DOI: 10.1016/S0273-1223(97)00000-0.

    Article  Google Scholar 

  85. HUANG Jun, CHEN Jian. Recent advances on the treatment technologies of ammonia-nitrogen wastewater [J]. Technigues and Equipment for Environmental Pollution Control, 2002, 3(1): 65–68. (in Chinese)

    Google Scholar 

  86. GRISMER M E, COLLISON R S. The zeolite-anammox treatment process for nitrogen removal from wastewater—A review [J]. Water, 2017, 9: 901–915. DOI: 10.3390/w9110901.

    Article  Google Scholar 

  87. BACHU S, WATSON T L. Review of failures for wells used for CO2, and acid gas injection in Alberta, Canada [J]. Energy Procedia, 2009, 1: 3531–3537. DOI: 10.1016/j.egypro.2009.02.146.

    Article  Google Scholar 

  88. CHIEN T W, CHU H. Removal of SO2, and NO from flue gas by wet scrubbing using an aqueous NaClO2 solution [J]. Journal of Hazardous Materials, 2000, 80: 43–57. DOI: 10.1016/S0304-3894(00)00274-0.

    Article  Google Scholar 

  89. CHANDARA C, AZIZLI K A M, AHMAD Z A, SAKAI E. Use of waste gypsum to replace natural gypsum as set retarders in portland cement [J]. Waste Management, 2009, 29: 1675–1679. DOI: 10.1016/j.wasman.2008.11.014.

    Article  Google Scholar 

  90. RUTHERFORD P M, DUDAS M J, SAMEK R A. Environmental impacts of phosphogypsum [J]. Science of the Total Environment, 1994, 149: 1–38. DOI: 10.1016/0048–9697(94)90002-7.

    Article  Google Scholar 

  91. MOSIER N, WYMAN C, DALE B, ELANDER R, LEE Y Y. Features of promising technologies for pretreatment of lignocellulosic biomass [J]. Bioresource Technology, 2005, 96: 673–686. DOI: 10.1016/j.biortech.2004.06.025.

    Article  Google Scholar 

  92. OLIVEROS E, LEGRINI O, HOHL M, MÜLLER T, BRAUN A M. Industrial waste water treatment: Large scale development of a light-enhanced Fenton reaction [J]. Chemical Engineering and Processing, 1997, 36: 397–405. DOI: 10.1016/S0255-2701(97)00011-1.

    Article  Google Scholar 

  93. AIKEN D V, FÄRE R, GROSSKOPF S, PASURKA C A. Pollution abatement and productivity growth: Evidence from Germany, Japan, the Netherlands, and the United States [J]. Environmental & Resource Economics, 2009, 44: 11–28. DOI: 10.1007/s10640-008-9256-2.

    Article  Google Scholar 

  94. SHAH F, ZILBERMAN D, LICHTENBERG E. Optimal combination of pollution prevention and abatement policies: The case of agricultural drainage [J]. Environmental and Resource Economics, 1995, 5: 29–49. DOI: 10.1007/BF00691908.

    Article  Google Scholar 

  95. DU Wu, GAO Qing, ZHANG En, MIAO Qi, WU Jiao. The emission status and composition analysis of municipal solid waste in China [J]. Research of Environmental Science, 2006, 19(5): 85–90. (in Chinese)

    Google Scholar 

  96. SLOOT H A V D, KOSSON D S, HJELMAR O. Characteristics, treatment and utilization of residues from municipal waste incineration [J]. Waste Management, 2001, 21(8): 753–765. DOI: 10.1016/S0956-053X(01)00009-5.

    Article  Google Scholar 

  97. BURGESS J E, PARSONS S A, STUETZ R M. Developments in odour control and waste gas treatment biotechnology: A review [J]. Biotechnology Advances, 2001, 19: 35–63. DOI: 10.1016/S0734-9750(00)00058-6.

    Article  Google Scholar 

  98. MO Jia, YANG Qi, ZHANG Na, ZHANG Wen, ZHENG Yi, ZHANG Zhi. A review on agro-industrial waste (AIW) derived adsorbents for water and wastewater treatment [J]. Journal of Environmental Management, 2018, 227: 395–405. DOI: 10.1016/j.jenvman.2018.08.069.

    Article  Google Scholar 

  99. SUSHMA, KUMARI M, SAROHA A K. Performance of various catalysts on treatment of refractory pollutants in industrial wastewater by catalytic wet air oxidation: A review [J]. Journal of Environmental Management, 2018, 228: 169–188. DOI: 10.1016/j.jenvman.2018.09.003.

    Article  Google Scholar 

  100. PAMBOR M, WIESNER M. Study of the process design and flue gas treatment of an industrial-scale energy-fromwaste combustion plant [J]. Industrial & Engineering Chemistry Research, 2007, 46: 2648–2656. DOI: 10.1021/ie060929d.

    Article  Google Scholar 

  101. RAUT S P, RALEGAONKAR R V, MANDAVGANE S A. Development of sustainable construction material using industrial and agricultural solid waste: A review of wastecreate bricks [J]. Construction & Building Materials, 2011, 25: 4037–4042. DOI: 10.1016/j.conbuildmat.2011.04.038.

    Article  Google Scholar 

  102. CHEN Xiang, CHEN Yong, ZHOU Tao, LIU De, HU Hang, FAN Shao. Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries [J]. Waste Management, 2015, 38: 349–356. DOI: 10.1016/j.wasman.2014.12.023.

    Article  Google Scholar 

  103. ZHANG Gui-qing, ZHANG Qi, ZHOU Kang. Acid recovery from waste sulfuric acid by diffusion dialysis [J]. Journal of Central South University of Technology, 1999, 6(2): 103–106. DOI: 10.1007/s11771-999-0008-4.

    Article  Google Scholar 

  104. VIEIRA A M S, BERGAMASCO R, GIMENES M L, NAKAMURA C V, FILHO B P D. Microbial populations of an upflow anaerobic sludge blanket reactor treating wastewater from a gelatin industry [J]. Environmental Technology Letters, 2001, 22: 1477–1485. DOI: 10.1080/09593332208618182.

    Article  Google Scholar 

  105. KONG Xiu, SHI Xiao, REN Rui, ZHAO Feng, XING Xin. Experimental research on treating gelatin wastewater by the joint process of photosynthetic bacteria and activated sludge method [J]. Environmental Engineering, 2010, 28(3): 39–42. (in Chinese)

    Google Scholar 

  106. DIWANI G E, RAFIE S E, IBIARI N N E, AILA H I E. Recovery of ammonia nitrogen from industrial wastewater treatment as struvite slow releasing fertilizer [J]. Desalination, 2007, 214: 200–214. DOI: 10.1016/j.desal. 2006.08.019.

    Article  Google Scholar 

  107. HUANG Zhi, HUANG Guang, SHI Chun, JI Jing. Effect of DO on high concentration of ammonia nitrogen wastewater treatment in membrane bioreactor [J]. Environmental Science & Technology, 2010, 33(1): 138–141. (in Chinese)

    Google Scholar 

  108. WANG Yu, PELKONEN M, KOTRO M. Treatment of high ammonium-nitrogen wastewater from composting facilities by air stripping and catalytic oxidation [J]. Water Air & Soil Pollution, 2010, 208: 259–273. DOI: 10.1007/s11270-009-0164-z.

    Article  Google Scholar 

  109. POOLADI-DARVISH M, HONG H, STOCKER R, BENNION B, THEYS S. Chromatographic partitioning of H2S and CO2 in acid gas disposal [J]. Journal of Canadian Petroleum Technology, 2008, 10: 52–57. DOI: 10.2118/130064-PA.

    Google Scholar 

  110. SRIVASTAVA R K, JOZEWICZ W. Flue gas desulfurization: The state of the art [J]. Air & Waste Management Association, 2001, 12: 1676–1688. DOI: 10.1080/10473289.2001.10464387.

    Article  Google Scholar 

  111. NELSON W H. Gypsum waste disposal: Land vs sea or recycling [J]. Chemical Ecology, 1990, 4: 247–258. DOI: 10.1080/02757549008035239.

    Article  Google Scholar 

  112. TAYIBI H, CHOURA M, LOPEZ F A, ALGUACIL F J, LOPEZDELGADO A. Environmental impact and management of phosphogypsum [J]. Environmental Management, 2009, 8: 2377–2386. DOI: 10.1016/j.jenvman.2009.03.007.

    Google Scholar 

  113. LIU Xiao, GAO Xing, WANG Wei, ZHENG Lei, ZHOU Ying, SUN Yi. Pilot-scale anaerobic codigestion of municipal biomass waste: Focusing on biogas production and GHG reduction [J]. Renewable Energy, 2012, 44: 463–468. DOI: 10.1016/j.renene.2012.01.092.

    Article  Google Scholar 

  114. KHAITAN S, DZOMBAK D A, LOWRY G V. Chemistry of the acid neutralization capacity of bauxite residue [J]. Environmental Engineering Science, 2009, 26: 873–881. DOI: 10.1089/ees.2007.0228.

    Article  Google Scholar 

  115. CHVEDOV D, OSTAP S, LE T. Surface properties of red mud particles from potentiometric titration [J]. Colloids and Surfaces A. Physicochemical and Engineering Aspects, 2001, 182: 131–141. DOI: 10.1016/S0927-7757(00)00814-1.

    Article  Google Scholar 

  116. YANG Yang, WANG Xue, WANG Ming, WANG Hua, XIAN Peng. Iron recovery from the leached solution of red mud through the application of oxalic acid [J]. International Journal of Mineral Processing, 2016, 157: 145–151. DOI: 10.1016/j.minpro.2016.11.001.

    Article  Google Scholar 

  117. COUPERTHWAITE S J, JOHNSTONE D W, MILLAR G J, FROST R L. Neutralization of acid sulfate solutions using bauxite refinery residues and its derivatives [J]. Industrial & Engineering Chemistry Research, 2013, 52: 1388–1395. DOI: 10.1021/ie301618p.

    Article  Google Scholar 

  118. ZHANG Guo, LI Shao, ZHANG Xin, WANG Zhi. Comparison study on different de-alkalization processes of red mud by Bayer process [J]. Inorganic Chemicals Industry, 2012, 44(18): 40–42. (in Chinese)

    Google Scholar 

  119. CLARK M W, JOHNSTON M, REICHELT-BRUSHETT A J. Comparison of several different neutralisations to a bauxite refinery residue: Potential effectiveness environmental ameliorants [J]. Applied Geochemistry, 2015, 56: 1–10. DOI: 10.1016/j.apgeochem.2015.01.015.

    Article  Google Scholar 

  120. HAN Y S, JI S, LEE P K, OH C. Bauxite residue neutralization with simultaneous mineral carbonation using atmospheric CO2 [J]. Journal of Hazardous Materials, 2016, 326: 87–93. DOI: 10.1016/j.jhazmat.2016.12.020.

    Article  Google Scholar 

  121. MAYES W, YOUNGER P, AUMONIER J. Buffering of alkaline steel slag leachate across a natural wetland [J]. Environmental Science & Technology, 2006, 40: 1237–1243. DOI: 10.1021/es051304u.

    Article  Google Scholar 

  122. JONES G, JOSHI G, CLARK M, MCCONCHIE D. Carbon capture and the aluminium industry: Preliminary studies [J]. Environmental Chemistry, 2006, 3: 297–303. DOI: 10.1071/EN06018.

    Article  Google Scholar 

  123. ZHU Feng, XUE Sheng-guo, HARTLEY W, HUANG Ling, WU Chuan, LI Xiao-bin. Novel predictors of soil genesis following natural weathering processes of bauxite residues [J]. Environmental Science and Pollution Research, 2016, 23: 2856–2863. DOI: 10.1007/s11356-015-5537-9.

    Article  Google Scholar 

  124. DILMORE R, LU P, ALLEN D, SOONG Y, HEDGES S. Sequestration of CO2 in mixtures of bauxite residue and saline wastewater [J]. Energy & Fuels, 2008, 22: 1325–1333. DOI: 10.1021/ef7003943.

    Article  Google Scholar 

  125. ZHONG Chen, XIA Ju. Study on leaching Na+ in red mud from bayer process [J]. Bulletin of the Chinese Ceramic Society, 2013, 32(10): 2012–2015. (in Chinese)

    Google Scholar 

  126. LI Yi-wei, JIANG Jun, XUE Sheng-guo, MILLAR G, KONG Xiang-feng, LI Xiao-fei, LI Meng, LI Chu. Effect of ammonium chloride on leaching behavior of alkaline anion and sodium ion in bauxite residue [J]. Transactions of Nonferrous Metals Society of China, 2018, 28(10): 2125–2134. DOI: 10.1016/S1003-6326(18)64857-5.

    Article  Google Scholar 

  127. PHILIPSBORN H V, KÜHNAST E. Gamma spectrometric characterisation of industrially used african and australian bauxites and their red mud tailings [J]. Radiation Protection Dosimetry, 1992, 45: 741–743. DOI: https://doi.org/10.1093/oxfordjournals.rpd.a081642.

    Article  Google Scholar 

  128. SU Chun. In situ infrared speciation of adsorbed carbonate on aluminum and iron oxides [J]. Clays and Clay Minerals, 1997, 45: 814–825. DOI: 10.1346/CCMN.1997. 0450605.

    Article  Google Scholar 

  129. TANG Xiao, XU Gang, LIU Run, LI Shi, XU Kai. Simulation experiments for dealkalization of red mud by limekiln gas [J]. Journal of Chongqing University, 2015, 38(5): 142–150. (in Chinese)

    Google Scholar 

  130. YI Yuan, HAN Min. Characteristics and mechanism of sodium removal by the synergistic action of flue gas and waste solid [J]. Journal of Environmental Sciences, 2012, 33: 2522–2527. (in Chinese)

    Google Scholar 

  131. FULLER R D, NELSON E D P, RICHARDSON C J. Reclamation of red mud (bauxite residues) using alkalinetolerant grasses with organic amendments [J]. Journal of Environmental Quality, 1982, 11: 533–539. DOI: 10.2134/jeq1982.00472425001100030040x.

    Article  Google Scholar 

  132. FOIS E, LALLAI A A, MURA G. Sulfur dioxide absorption in a bubbling reactor with suspensions of bayer red mud [J]. Industrial & Engineering Chemistry Research, 2007, 46: 6770–6776. DOI: 10.1021/ie0616904.

    Article  Google Scholar 

  133. SAHU R C, PATEL R, RAY B C. Removal of hydrogen sulfide using red mud at ambient conditions [J]. Fuel Process Technol, 2011, 92: 1587–1592. DOI: 10.1016/j.fuproc. 2011.04.002.

    Article  Google Scholar 

  134. SHULTZ F, BERBER J. Hydrogen sulfide removal from hot producer gas with sintered absorbents [J]. Air Repair, 1969, 20: 93–96. DOI: 10.1080/00022470.1970.10469380.

    Google Scholar 

  135. BHATTACHARYYA A, RAJANIKANTH B S. Biodiesel exhaust treatment with HFAC plasma supported by red mud: Study on DeNOx and power consumption [J]. Energy Procedia, 2015, 75: 2371–2378. DOI: 10.1016/j.egypro.2015. 07.168.

    Article  Google Scholar 

  136. SOUZA K C D, ANTUNES M L P, COUPERTHWAITE S J, CONCEICAO F T D, BARROS T R D, FROST R. Adsorption of reactive dye on seawater-neutralised bauxite refinery residue [J]. Journal of Colloid and Interface Science, 2013, 396: 210–214. DOI: 10.1016/j.jcis.2013.01.011.

    Article  Google Scholar 

  137. WU Chuan, HUANG Liu, XUE Sheng-guo, HUANG Yu, HARTLEY W, CUI Meng-qian, WONG M H. Arsenic sorption by red mud-modified biochar produced from rice straw [J]. Environmental Science and Pollution Research, 2017, 24: 18168–18178. DOI: 10.1007/s11356-017–9466-7.

    Article  Google Scholar 

  138. WONG J, GOEN H. Sewage sludge as organic ameliorant for revegetation of fine bauxite refining residue [J]. Resources, Conservation and Recycling, 1994, 11: 297–309. DOI: 10.1016/0921-3449(94)90097-3.

    Article  Google Scholar 

  139. JONES B E H, HAYNES R J, PHILIPS I R. Influence of amendments on acidification and leaching of Na from bauxite processing sand [J]. Ecological Engineering, 2015, 84: 435–442. DOI: 10.1016/j.ecoleng.2015.09.054.

    Article  Google Scholar 

  140. JONES B E H, HAYNES R J, PHILIPS I R. Influence of organic waste and residue mud additions on chemical, physical and microbial properties of bauxite residue sand [J]. Environmental Science and Pollution Research, 2011, 18: 199–211. DOI: 10.1007/s11356-010-0364-5.

    Article  Google Scholar 

  141. WANG Li, LI Xiao-fei, ZHAI Er, TAO Feng, SUN Feng, ZHANG Zuo. Study on new technology of red mud alkali removal by desulfurization gypsum [J]. Science & Technology Information, 2010(21): 48–96. (in Chinese)

    Google Scholar 

  142. WONG J W C, HO G E. Use of waste gypsum in the revegetation on red mud deposits: A greenhouse study [J]. Waste Management and Research, 1993, 11: 249–256. DOI: 10.1006/wmre.1993.1024.

    Article  Google Scholar 

  143. KOPITTKE P M, MENZIES N W, FULTON I M. Gypsum solubility in seawater, and its application to bauxite residue amelioration [J]. Soil Research, 2005, 42: 953–960. DOI: 10.1071/SR04034.

    Article  Google Scholar 

  144. ZHU Feng, CHENG Qing, XUE Sheng-guo, LI Chu-xuan, HARTLEY W, WU Chuan, TIAN Tao. Influence of natural regeneration on fractal features of residue microaggregates in bauxite residue disposal areas [J]. Land Degradation and Development, 2018, 29: 138–149. DOI: 10.1002/ldr.2848.

    Article  Google Scholar 

  145. COURTNEY R G, TIMPSON J P. Reclamation of fine fraction bauxite processing residue (red mud) amended with coarse fraction residue and gypsum [J]. Water Air and Soil Pollution, 2005, 164: 91–102. DOI: 10.1007/s11270-005-2251–0.

    Article  Google Scholar 

  146. HO G E, MATHEW K, NEWMAN P W G. Leachate quality from gypsum neutralized red mud applied to sandy soils [J]. Water Air and Soil Pollution, 1989, 47: 1–18. DOI: 10.1007/BF00468992.

    Article  Google Scholar 

  147. JONES B E H, HAJNES R J, PHILIPS I R. Addition of an organic amendment and/or residue mud to bauxite residue sand in order to improve its properties as a growth medium [J]. Journal of Environmental Management, 2012, 95: 29–38. DOI: 10.1016/j.jenvman.2011.09.014.

    Article  Google Scholar 

  148. XUE Sheng-guo, LI Meng, JIANG Jun, MILLAR G J, LI Chu-xuan, KONG Xiang. Phosphogypsum stabilization of bauxite residue: Conversion of its alkaline characteristics [J]. Journal of Environmental Sciences, 2019, 77: 1–10. DOI: 10.1016/j.jes.2018.05.016.

    Article  Google Scholar 

  149. REN Jie, LIU Ji, CHEN Juan, LIU Xiao, LI Fa-sheng, DU Ping. Effects of vinegar and furfural residue on metal stability in bauxite residue [J]. Research of Environmental Sciences, 2016, 29(12): 1895–1903. (in Chinese)

    Google Scholar 

  150. XENIDIS A, HAROKOPOU A D, MYLONA E, BROFAS G. Modifying alumina red mud to support a revegetation cover [J]. JOM, 2005, 57: 42–46. DOI: 10.1007/s11837-005-0214-y.

    Article  Google Scholar 

  151. LI Xiao-bin. Study on side slope environment problems and the countermeasure of Pingguo red mud disposal Field [J]. Nonferrous Metal (Mining Section), 2007, 59(2): 29–31. (in Chinese)

    Google Scholar 

  152. KHAITAN S, DZOMBAK D A, SWALLOW P S, SCHMIDT K, FU J. Field evaluation of bauxite residue neutralization by carbon dioxide, vegetation, and organic amendments [J]. Journal of Environmental Engineering, 2010, 136: 1045–1053. DOI: 10.1061/(ASCE)EE.1943-7870.0000230.

    Article  Google Scholar 

  153. KLAUBER C, GRAFE M, POWER G. Bauxite residue issues: II. Options for residue utilization [J]. Hydrometallurgy, 2011, 108: 11–32. DOI: 10.1016/j.hydromet.2011.02.007.

    Google Scholar 

  154. WONG J W C. Effects of gypsum and sewage sludge amendment on physical properties of fine bauxite refining residue [J]. Soil Science, 1991, 152: 326–332. DOI: 10.1097/00010694-199111000-00003.

    Article  Google Scholar 

  155. COURTNEY R G, JORDAN S N, HARRINGTON T. Physico-chemical changes in bauxite residue following application of spent mushroom compost and gypsum [J]. Land Degradation and Development, 2009, 20: 572–581. DOI: 10.1002/ldr.926.

    Article  Google Scholar 

  156. ZHU Feng, HOU Jing, XUE Sheng-guo, WU Chuan, WANG Qiong, HARTLEY W. Vermicompost and gypsum amendments improve aggregate formation in bauxite residue [J]. Land Degradation and Development, 2017, 28: 2109–2120. DOI: 10.1002/ldr.2737.

    Article  Google Scholar 

  157. ZHU Feng, LI Xiao-fei, XUE Sheng-guo, HARTLEY W, WU Chuan, HAN Fu. Natural plant colonization improves the physical condition of bauxite residue over time [J]. Environmental Science and Pollution Research, 2016, 23: 22897–22905. DOI: 10.1007/s11356-016-7508-1.

    Article  Google Scholar 

  158. LEHOUX A P, LOCKWOOD C L, MAYES W M, STEWART D I, MORTIMER R J, GRUIZ K, BURKE I T. Gypsum addition to soils contaminated by red mud: Implications for aluminium, arsenic, molybdenum and vanadium solubility [J]. Environmental Geochemistry and Health, 2013, 35: 643–656. DOI: 10.1007/s10653-013-9547–6.

    Article  Google Scholar 

  159. BRAY A W, STEWART D I, COURTNEY R, ROUT S P, HUMPHREYS P N, MAYES W M, BURKE I T. Sustained bauxite residue rehabilitation with gypsum and organic matter 16 years after Initial Treatment [J]. Environmental Science & Technology, 2018, 52: 152–161. DOI: 10.1021/acs.est.7b03568.

    Article  Google Scholar 

  160. ZHANG Na, LI Hong, LIU Xiao. Recovery of scandium from bauxite residue-red mud: A review [J]. Rare Metals, 2016, 35: 887–900. DOI: 10.1007/s12598-016-0805–5.

    Article  Google Scholar 

  161. JOHNSTON M, CLARK M W, MCMAHON P, WARD N. Alkalinity conversion of bauxite refinery residues by neutralization [J]. Journal of Hazardous Materials, 2010, 182: 710–715.

    Article  Google Scholar 

  162. BORRA C R, BLANPAIN B, PONTIKES Y, BINNEMANS K, VANGERVEN T. Recovery of rare earths and other valuable metals from bauxite residue (red mud): A review [J]. Journal of Sustainable Metallurgy, 2016, 2: 365–386. DOI: 10.1007/s40831-016-0068-2.

    Article  Google Scholar 

  163. ZHU Feng, LI Yu-hua, XUE Sheng-guo, HARTLEY W, WU Hao. Effects of iron-aluminium oxides and organic carbon on aggregate stability of bauxite residues [J]. Environmental Science and Pollution Research, 2016, 23(9): 9073–9081.

    Article  Google Scholar 

  164. LIAO Jia-xin, JIANG Jun, XUE Sheng-guo, CHENG Qing, WU Hao, RAJENDRAN M, HARTLEY W, HUANG Long. A novel acid-producing fungus isolated from bauxite residue: the potential to reduce the alkalinity [J]. Geomicrobiology Journal, 2018, 35(10): 840–847. DOI: 10.1080/01490451.2018.1479807.

    Article  Google Scholar 

  165. XUE Sheng-guo, YE Yu, ZHU Feng, WANHG Qiong, JIANG Jun, HARTLEY W. Changes in distribution and microstructure of bauxite residue aggregates following amendments addition [J]. Journal of Environmental Sciences, 2019, 78: 276–286. DOI: 10.1016/j.jes.2018.10.010.

    Article  Google Scholar 

  166. JACOMINO V M F, OLIVEIRA K A P D, TADDEI M H T, SIQUEIRA M C, CAMEIRO M E D P. Radionuclides and heavy metal contents in phosphogypsum samples in comparison to Cerrado soils [J]. Revista Brasileira De Ciencia Do Solo, 2009, 33: 1481–1488. DOI: 10.1590/S0100-06832009000500038.

    Article  Google Scholar 

  167. BANNING N C, PHILIPS I R, JONES D, MURPHY D V. Development of microbial diversity and functional potential in bauxite residue sand under rehabilitation [J]. Restoration Ecology, 2011, 19: 78–87. DOI: 10.1111/j.1526-100X.2009. 00637.x.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-guo Xue  (薛生国).

Additional information

Foundation item: Projects(41877551, 41842020) supported by the National Natural Science Foundation of China; Project(201509048) supported by the Environmental Protection’s Special Scientific Research for Chinese Public Welfare Industry

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, Sg., Wu, Yj., Li, Yw. et al. Industrial wastes applications for alkalinity regulation in bauxite residue: A comprehensive review. J. Cent. South Univ. 26, 268–288 (2019). https://doi.org/10.1007/s11771-019-4000-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4000-3

Key words

关键词

Navigation