Skip to main content
Log in

Microstructural evolution and mechanical properties of an ultrahigh-strength Al−Zn−Mg−Cu alloy via powder metallurgy and hot extrusion

粉末冶金-热挤压制备超高强度 Al−Zn−Mg−Cu 合金的组织及力学性能

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

In this work, a novel ultrahigh-strength Al−10Zn−3.5Mg−1.5Cu alloy was fabricated by powder metallurgy followed by hot extrusion. Investigations on microstructural evolution and mechanical properties of the fabricated samples were carried out. The results show that the grain size of sintered samples matches with the powder particles after ball milling. The relative densities of sintered and hot extruded samples reach 99.1% and 100%, respectively. Owing to the comprehensive mechanism of grain refinement, aging and dispersion strengthening, the ultimate tensile strength, yield strength and elongation of the Al−10Zn−3.5Mg−1.5Cu alloy after hot extrusion and subsequent heat treatment achieve 810 MPa, 770 MPa and 8%, respectively.

摘要

本文采用粉末冶金联合热挤压工艺制备了一种新型超高强度 Al−10Zn−3.5Mg−1.5Cu 合金,并对 其组织演变和力学性能进行了研究。结果表明: 烧结样品的晶粒尺寸与球磨粉末颗粒的尺寸相一致。 烧结和热挤压样品的相对密度分别达到99.1%和100%。通过晶粒细化、 时效强化和弥散强化的综合 作用机制, Al−10Zn−3.5Mg-1.5Cu 合金经热挤压和热处理后, 极限抗拉强度达到 810 MPa, 屈服强度达 到770 MPa, 断后伸长率达到 8%。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LIU Jian, CHENG Yuan-sheng, CHAN S W N, SUNG D. Microstructure and mechanical properties of 7075 aluminum alloy during complex thixoextrusion [J]. Transactions of Nonferrous Metals Society of China, 2020, 30(12): 3173–3182. DOI: https://doi.org/10.1016/S1003-6326(20)65452-8.

    Article  Google Scholar 

  2. ZHANG Tao, ZHANG Shao-hang, LI Lei, LU Shi-hong, GONG Hai. Modified constitutive model and workability of 7055 aluminium alloy in hot plastic compression [J]. Journal of Central South University, 2019, 26: 2930–2942. DOI: https://doi.org/10.1007/s11771-019-4225-1.

    Article  Google Scholar 

  3. MOON C, THUILLIER S, LEE J, LEE M G. Mechanical properties of solution heat treated Al−Zn−Mg−Cu (7075) alloy under different cooling conditions: Analysis with full field measurement and finite element modeling [J]. Journal of Alloys and Compounds, 2021, 856: 158180. DOI: https://doi.org/10.1016/j.jallcom.2020.158180.

    Article  Google Scholar 

  4. WANG Yi-chang, WU Xiao-dong, CAO Ling-fei, TONG Xin. Effect of Ag on aging precipitation behavior and mechanical properties of aluminum alloy 7075 [J]. Materials Science and Engineering A, 2020: 140515. DOI: https://doi.org/10.1016/j.msea.2020.140515.

  5. ZOU Hao, PAN Qing-lin, SHI Yun-jia, CHEN Jing, XIANG Hao, LI Rui-shi, LI Hang. Effect of ultrasonic field on microstructure and mechanical properties of as-cast 7085 aluminum alloy [J]. Journal of Central South University, 2018, 25: 1285–1294. DOI: https://doi.org/10.1007/s11771-018-3825-5.

    Article  Google Scholar 

  6. LEE S H, JUNG J G, BAIK S, PARK S H. Effects of Ti addition on the microstructure and mechanical properties of Al−Zn−Mg−Cu−Zr alloy [J]. Materials Science and Engineering A, 2021, 801: 140437. DOI: https://doi.org/10.1016/j.msea.2020.140437.

    Article  Google Scholar 

  7. GUO Yue, ZHANG Meng, WANG Zhao-xin, WANG Shun-bo. Effects of cold temperatures, strain rates and anisotropy on the mechanical behavior and fracture morphology of an Al−Zn−Mg−Cu alloy [J]. Materials Science and Engineering A, 2020: 140691. DOI: https://doi.org/10.1016/j.msea.2020.140691.

  8. TANG Jie, WANG Jin-hai, TENG Jie, WANG Guan. Effect of Zn content on the dynamic softening of Al−Zn−Mg−Cu alloys during hot compression deformation [J]. Vacuum, 2021, 184: 109941. DOI: https://doi.org/10.1016/j.vacuum.2020.109941.

    Article  Google Scholar 

  9. LI Lei, ZHU Qing-feng, ZUO Yu-bo, CUI Jian-zhong. Study on the transitional structures of 7075 aluminum alloy ingot after switching off a low-frequency electromagnetic field in the horizontal direct chill casting [J]. Journal of Crystal Growth, 2020, 548: 125827. DOI: https://doi.org/10.1016/j.jcrysgro.2020.125827.

    Article  Google Scholar 

  10. CHEN Gang, CHEN Wei, ZHANG Guo-wei, ZHENG Shun-qi. Microstructures and mechanical properties of Al−12Zn−2.4Mg−1.2Cu alloy under different deformation ways [J]. Rare Metal Materials and Engineering, 2016, 45(9): 2237–2241. DOI: https://doi.org/10.1016/S1875-5372(17)30009-7.

    Article  Google Scholar 

  11. LI Long, WEI Li-jun, XU Yan-jin, MAO Ling, WU Su-jun. Study on the optimizing mechanisms of superior comprehensive properties of a hot spray formed Al−Zn−Mg−Cu alloy [J]. Materials Science and Engineering A, 2019, 742: 102–108. DOI: https://doi.org/10.1016/j.msea.2018.10.120.

    Article  Google Scholar 

  12. WEI Li-jun, HAN Bao-shuai, YE Fan, DITTA A. Influencing mechanisms of heat treatments on microstructure and comprehensive properties of Al−Zn−Mg−Cu alloy formed by spray forming [J]. Journal of Materials Research and Technology, 2020, 9(3): 6850–6858. DOI: https://doi.org/10.1016/j.jmrt.2020.03.121.

    Article  Google Scholar 

  13. SWEET G A W, AMIRKHIZ B S, WILLIAMS B W, TAYLOR A. Microstructural evolution of a forged 2XXX series aluminum powder metallurgy alloy [J]. Materials Characterization, 2019, 151: 342–350. DOI: https://doi.org/10.1016/j.matchar.2019.03.033.

    Article  Google Scholar 

  14. LUO Ya-jun, ZHANG Zhi-feng. Numerical modeling of annular electromagnetic stirring with intercooling in direct chill casting of 7005 aluminum alloy billet [J]. Progress in Natural Science: Materials International, 2019, 29(1): 81–87. DOI: https://doi.org/10.1016/j.pnsc.2019.01.007.

    Article  Google Scholar 

  15. ESKIN D G, SUYITNO, KATGERMAN L. Mechanical properties in the semi-solid state and hot tearing of aluminium alloys [J]. Progress in Materials Science, 2004, 49(5): 629–711. DOI: https://doi.org/10.1016/S0079-6425(03)00037-9.

    Article  Google Scholar 

  16. ZHANG L, ESKIN D G, LAPOOR M, KATGERMAN L. Factors affecting thermal contraction behavior of an AA7050 alloy [J]. Materials Science and Engineering A, 2010, 527: 3264–3270. DOI: https://doi.org/10.1016/j.msea.2010.02.005.

    Article  Google Scholar 

  17. LI Hai-chao, CAO Fu-yang, CUO Shu, JIA Yan-dong. Effects of Mg and Cu on microstructures and properties of spray-deposited Al−Zn−Mg−Cu alloys [J]. Journal of Alloys and Compounds, 2017, 719: 89–96. DOI: https://doi.org/10.1016/j.jallcom.2017.05.101.

    Article  Google Scholar 

  18. HERZALLAH H, ELSAYD A, SHASH A. Effect of carbon nanotubes (CNTs) and silicon carbide (SiC) on mechanical properties of pure Al manufactured by powder metallurgy [J]. Journal of Materials Research and Technology, 2020, 9(2): 1948–1954. DOI: https://doi.org/10.1016/j.jmrt.2019.12.027.

    Article  Google Scholar 

  19. LADEPHA A D P, NEUBING H, BISHOP D P. Metallurgical assessment of an emerging Al−Zn−Mg−Cu P/M alloy [J]. Materials Science and Engineering A, 2009, 520: 105–113. DOI: https://doi.org/10.1016/j.msea.2009.05.039.

    Article  Google Scholar 

  20. WANG Tao, HUANG Yu-feng, YANG Lun, MA Yun-zhu. Microstructure and mechanical properties of 7055 Al alloy prepared under different sintering conditions using powder by-products [J]. Materials Science and Engineering A, 2020: 140562. DOI: https://doi.org/10.1016/j.msea.2020.140562.

  21. TÜNÇAY M M, MUÑIZ-LERMA J A, BISHOP D P, BROCHU M. Spark plasma sintering and spark plasma upsetting of an Al−Zn−Mg−Cu alloy [J]. Materials Science and Engineering A, 2017, 704: 154–163. DOI: https://doi.org/10.1016/j.msea.2017.08.015.

    Article  Google Scholar 

  22. YANG Q, CHENG D L, ZHANG F G, SHI Q W. Spark plasma sintering mechanisms of the Al−Zn−Mg−Cu alloys and TiB2/Al−Zn−Mg−Cu composites [J]. Materials Characterization, 2021, 172: 110825. DOI: https://doi.org/10.1016/j.matchar.2020.110825.

    Article  Google Scholar 

  23. TIAN Wen-ming, LI Song-mei, Chen Xin, LIU Jian-hua. Intergranular corrosion of spark plasma sintering assembled bimodal grain sized AA7075 aluminum alloys [J]. Corrosion Science, 2016, 107: 211–224. DOI: https://doi.org/10.1016/j.corsci.2016.02.034.

    Article  Google Scholar 

  24. SCHAFFER G B, HUO S H, DRENNAN J, AUCHTERLONIE G J. The effect of trace elements on the sintering of an Al−Zn−Mg−Cu alloy [J]. Acta Materialia, 2001, 49: 2671–2678. DOI: https://doi.org/10.1016/S1359-6454(01)00177-X.

    Article  Google Scholar 

  25. SCHAFFER G B, SERCOMBE T B, LUMLEY R N. Liquid phase sintering of aluminium alloys [J]. Materials Chemistry and Physics, 2001, 67: 85–91. DOI: https://doi.org/10.1016/S0254-0584(00)00424-7.

    Article  Google Scholar 

  26. HOU J P, LI R, WANG Q, YU H Y. Three principles for preparing Al wire with high strength and high electrical conductivity [J]. Journal of Materials Science and Technology, 2019, 35: 743–751. DOI: https://doi.org/10.1016/j.jmst.2018.11.013.

    Google Scholar 

  27. BALOG M, SIMANCIK F, WALCHER M, RAJNER W. Extruded Al−Al2O3 composites formed in situ during consolidation of ultrafine Al powders: Effect of the powder surface area [J]. Materials Science and Engineering A, 2011, 529: 131–137. DOI: https://doi.org/10.1016/j.msea.2011.09.006.

    Article  Google Scholar 

  28. REN Jian, WANG Ri-chu, FENG Yan, PENG Chao-qun. Microstructure evolution and mechanical properties of an ultrahigh strength Al−Zn−Mg−Cu−Zr−Sc (7055) alloy processed by modified powder hot extrusion with post aging [J]. Vacuum, 2019, 161: 434–442. DOI: https://doi.org/10.1016/j.vacuum.2019.01.013.

    Article  Google Scholar 

  29. BALOG M, OROVCIK L, NAGY S, KRIZIK P. To what extent does friction-stir welding deteriorate the properties of powder metallurgy Al? [J]. Journal of Materials Research and Technology, 2020, 9(3): 6733–6744. DOI: https://doi.org/10.1016/j.jmrt.2020.04.087.

    Article  Google Scholar 

  30. BALOG M, POLETTI C, SIMANCIK F, WALCHER M. The effect of native Al2O3 skin disruption on properties of fine Al powder compacts [J]. Journal of Alloys and Compounds, 2011, 509: S235–S238. DOI: https://doi.org/10.1016/j.jallcom.2010.12.042.

    Article  Google Scholar 

  31. GUO Feng-bin, ZHU Bao-hong, JIN Long-bing. Microstructure and mechanical properties of 7A56 aluminum alloy after solution treatment [J]. Rare Metals, 2017, 7: 1–8. DOI: https://doi.org/10.1007/s12598-017-0985-7.

    Google Scholar 

  32. WANG Ming, HUANG Lan-ping, CHEN Kang-hua, LIU Wen-sheng. Influence of minor combined addition of Cr and Pr on microstructure, mechanical properties and corrosion behaviors of an ultrahigh strength Al−Zn−Mg−Cu−Zr alloy [J]. Micron, 2018, 104: 80–88. DOI: https://doi.org/10.1016/j.micron.2017.10.008.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

CHEN Cun-guang and HAN Wei-hao conducted the literature review and wrote the draft of the manuscript. QI Miao, DONG Shi-peng and LI Pei analyzed the measured data. YANG Fang and HAO Jun-jie edited the draft of manuscript. GUO Zhi-meng provided the concept. All authors replied to reviewers’ comments and revised the final version.

Corresponding author

Correspondence to Cun-guang Chen  (陈存广).

Additional information

Conflict of interest

CHEN Cun-guang, HAN Wei-hao, QI Miao, DONG Shi-peng, LI Pei, YANG Fang, HAO Jun-jie and GUO Zhi-meng declare that they have no conflict of interest.

Foundation item: Project (FRF-GF-19-012AZ) supported by the Fundamental Research Funds for the Central Universities, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Cg., Han, Wh., Qi, M. et al. Microstructural evolution and mechanical properties of an ultrahigh-strength Al−Zn−Mg−Cu alloy via powder metallurgy and hot extrusion. J. Cent. South Univ. 28, 1195–1205 (2021). https://doi.org/10.1007/s11771-021-4669-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4669-y

Key words

关键词

Navigation