Skip to main content
Log in

Chemical poison and regeneration of SCR catalysts for NO x removal from stationary sources

  • Review Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

Selective catalytic reduction (SCR) of NO x with NH3 is an effective technique to remove NO x from stationary sources, such as coal-fired power plant and industrial boilers. Some of elements in the fly ash deactivate the catalyst due to strong chemisorptions on the active sites. The poisons may act by simply blocking active sites or alter the adsorption behaviors of reactants and products by an electronic interaction. This review is mainly focused on the chemical poisoning on V2O5-based catalysts, environmental-benign catalysts and low temperature catalysts. Several common poisons including alkali/alkaline earth metals, SO2 and heavy metals etc. are referred and their poisoning mechanisms on catalysts are discussed. The regeneration methods of poisoned catalysts and the development of poison-resistance catalysts are also compared and analyzed. Finally, future research directions in developing poisoning resistance catalysts and facile efficient regeneration methods for SCR catalysts are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hao J, Tian H, Lu Y. Emission inventories of NO x from commercial energy consumption in China, 1995–1998. Environmental Science & Technology, 2002, 36(4): 552–560

    Article  CAS  Google Scholar 

  2. Hao J, Wang L. Improving urban air quality in China: Beijing case study. Journal of the Air & Waste Management Association, 2005, 55(9): 1298–1305

    Article  CAS  Google Scholar 

  3. Larrubia M, Ramis G, Busca G. An FT-IR study of the adsorption of urea and ammonia over V2O5-MoO3-TiO2 SCR catalysts. Applied Catalysis B: Environmental, 2000, 27(3): 145–151

    Article  Google Scholar 

  4. Busca G, Lietti L, Ramis G, Berti F. Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: a review. Applied Catalysis B: Environmental, 1998, 18(1): 1–36

    Article  CAS  Google Scholar 

  5. Liang Z, Ma X, Lin H, Tang Y. The energy consumption and environmental impacts of SCR technology in China. Applied Energy, 2011, 88(4): 1120–1129

    Article  CAS  Google Scholar 

  6. Kobayashi Y, Tajima N, Nakano H, Hirao K. Selective catalytic reduction of nitric oxide by ammonia: the activation mechanism. Journal of Physical Chemistry B, 2004, 108(33): 12264–12266

    Article  CAS  Google Scholar 

  7. Nova I, Ciardelli C, Tronconi E, Chatterjee D, Weibel M. NH3-NO/NO2 SCR for diesel exhausts after treatment: mechanism and modelling of a catalytic converter. Topics in Catalysis, 2007, 42(1): 43–46

    Article  CAS  Google Scholar 

  8. Smirniotis P, Pena D, Uphade B. Low–temperature selective catalytic reduction (SCR) of NO with NH3 by Using Mn, Cr, and Cu oxides supported on hombikat TiO2. Angewandte Chemie International Edition, 2001, 40(13): 2479–2482

    Article  CAS  Google Scholar 

  9. Li J, He H, Hu C, Zhao J. The abatement of major pollutants in air and water by environmental catalysis. Frontiers of Environmental Science & Engineering, 2013, 7(3): 302–325

    Article  CAS  Google Scholar 

  10. Topsøe N, Dumesic J, Topsøe H. Vanadia-Titania catalysts for selective catalytic reduction of nitric-oxide by ammonia ii studies of active sites and formulation of catalytic cycles. Journal of Catalysis, 1995, 151(1): 241–252

    Article  Google Scholar 

  11. Topsøe N, Topsøe H, Dumesic J. Vanadia/titania catalysts for selective catalytic reduction (SCR) of nitric-oxide by ammonia I. Combined temperature-programmed in-situ FTIR and on-line mass-spectroscopy studies. Journal of Catalysis, 1995, 151(1): 226–240

    Article  Google Scholar 

  12. Topsøe N Y. Mechanism of the selective catalytic reduction of nitric oxide by ammonia elucidated by in situ on-line fourier transform infrared spectroscopy. Science, 1994, 265(5176): 1217–1219

    Article  Google Scholar 

  13. Vargas M, Casanova M, Trovarelli A, Busca G. An IR study of thermally stable V2O5-WO3-TiO2 SCR catalysts modified with silica and rare-earths (Ce, Tb, Er). Applied Catalysis B: Environmental, 2007, 75(3–4): 303–311

    Article  CAS  Google Scholar 

  14. Liu F, Yu Y, He H. Environmentally-benign catalysts for the selective catalytic reduction of NO x from diesel engines: structureactivity relationship and reaction mechanism aspects. Chemical Communications, 2014, 50(62): 8445–8463

    Article  CAS  Google Scholar 

  15. Qi G, Yang R T. A superior catalyst for low-temperature NO reduction with NH3. Chemical Communications, 2003, 7(7): 848–849

    Article  CAS  Google Scholar 

  16. Qi G, Yang R. Performance and kinetics study for low-temperature SCR of NO with NH3 over MnOx–CeO2 catalyst. Journal of Catalysis, 2003, 217(2): 434–441

    Article  CAS  Google Scholar 

  17. Khodayari R, Odenbrand C. Regeneration of commercial SCR catalysts by washing and sulphation: effect of sulphate groups on the activity. Applied Catalysis B: Environmental, 2001, 33(4): 277–291

    Article  CAS  Google Scholar 

  18. Khodayari R, Odenbrand C. Regeneration of commercial TiO2-V2O5-WO3 SCR catalysts used in bio fuel plants. Applied Catalysis B: Environmental, 2001, 30(1): 87–99

    Article  CAS  Google Scholar 

  19. Apostolescu N, Geiger B, Hizbullah K, Jan M, Kureti S, Reichert D, Schott F, Weisweiler W. Selective catalytic reduction of nitrogen oxides by ammonia on iron oxide catalysts. Applied Catalysis B: Environmental, 2006, 62(1): 104–114

    Article  CAS  Google Scholar 

  20. Liu F, He H, Zhang C, Feng Z, Zheng L, Xie Y, Hu T. Selective catalytic reduction of NO with NH3 over iron titanate catalyst: catalytic performance and characterization. Applied Catalysis B: Environmental, 2010, 96(3): 408–420

    Article  CAS  Google Scholar 

  21. Liu F, He H, Lian Z, Shan W, Xie L, Asakura K, Yang W, Deng H. Highly dispersed iron vanadate catalyst supported on TiO2 for the selective catalytic reduction of NO x with NH3. Journal of Catalysis, 2013, 307: 340–351

    Article  CAS  Google Scholar 

  22. Chen L, Li J, Ge M. Promotional Effect of Ce-doped V2O5-WO3/TiO2 with low vanadium loadings for selective catalytic reduction of NO x by NH3. Journal of Physical Chemistry C, 2009, 113(50): 21177–21184

    Article  CAS  Google Scholar 

  23. Shan W, Liu F, He H, Shi X, Zhang C. Novel cerium-tungsten mixed oxide catalyst for the selective catalytic reduction of NO x with NH3. Chemical Communications, 2011, 47(28): 8046–8048

    Article  CAS  Google Scholar 

  24. Peng Y, Li K, Li J. Identification of the active sites on CeO2–WO3 catalysts for SCR of NO x with NH3: an in situ IR and Raman spectroscopy study. Applied Catalysis B: Environmental, 2013, 140: 483–492

    Article  CAS  Google Scholar 

  25. Peng Y, Qu R, Zhang X, Li J. The relationship between structure and activity of MoO3–CeO2 catalysts for NO removal: influences of acidity and reducibility. Chemical Communications, 2013, 49 (55): 6215–6217

    Article  CAS  Google Scholar 

  26. Chang H, Li J, Su W, Shao Y, Hao J. A novel mechanism for poisoning of metal oxide SCR catalysts: base-acid explanation correlated with redox properties. Chemical Communications, 2014, 50(70): 10031–10034

    Article  CAS  Google Scholar 

  27. Shan W, Liu F, He H, Shi X, Zhang C. A superior Ce-W-Ti mixed oxide catalyst for the selective catalytic reduction of NO x with NH3. Applied Catalysis B: Environmental, 2012, 115: 100–106

    Article  CAS  Google Scholar 

  28. Yang S, Wang C, Li J, Yan N, Ma L, Chang H. Low temperature selective catalytic reduction of NO with NH3 over Mn–Fe spinel: performance, mechanism and kinetic study. Applied Catalysis B: Environmental, 2011, 110(0): 71–80

    Article  CAS  Google Scholar 

  29. Baraket L, Ghorbel A, Grange P. Selective catalytic reduction of NO by ammonia on V2O5–SO4 2–/TiO2 catalysts prepared by the sol-gel method. Applied Catalysis B: Environmental, 2007, 72(1–2): 37–43

    Article  CAS  Google Scholar 

  30. Chen L, Li J, Ge M. The poisoning effect of alkali metals doping over nano V2O5–WO3/TiO2 catalysts on selective catalytic reduction of NO x by NH3. Chemical Engineering Journal, 2011, 170(2–3): 531–537

    Article  CAS  Google Scholar 

  31. Lietti L, Nova I, Ramis G, Dall L’ Acqua E, Busca G, Giamello E, Forzatti P, Bregani F. Characterization and Reactivity of V2O5–MoO3/TiO2 De-NO x SCR Catalysts. Journal of Catalysis, 1999, 187(2): 419–435

    Article  CAS  Google Scholar 

  32. Li P, Xin Y, Li Q, Wang Z, Zhang Z, Zheng L. Ce-Ti amorphous oxides for selective catalytic reduction of NO with NH3: confirmation of Ce-O-Ti active sites. Environmental Science & Technology, 2012, 46(17): 9600–9605

    Article  CAS  Google Scholar 

  33. Shan W, Liu F, He H, Shi X, Zhang C. Novel cerium-tungsten mixed oxide catalyst for the selective catalytic reduction of NOx with NH3. Chemical Communications, 2011, 47(28): 8046–8048

    Article  CAS  Google Scholar 

  34. Liu Z, Zhang S, Li J, Ma L. Promoting effect of MoO3 on the NOx reduction by NH3 over CeO2/TiO2 catalyst studied with in situ DRIFTS. Applied Catalysis B: Environmental, 2014, 144: 90–95

    Article  CAS  Google Scholar 

  35. Kang M, Park E, Kim J, Yie J. Manganese oxide catalysts for NOx reduction with NH3 at low temperatures. Applied Catalysis A, General, 2007, 327(2): 261–269

    Article  CAS  Google Scholar 

  36. Tang X, Hao J, Yi H, Li J. Low-temperature SCR of NO with NH3 over AC/C supported manganese-based monolithic catalysts. Catalysis Today, 2007, 126(3): 406–411

    Article  CAS  Google Scholar 

  37. Qi G, Yang R, Chang R. MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures. Applied Catalysis B: Environmental, 2004, 51 (2): 93–106

    Article  CAS  Google Scholar 

  38. Kang M, Park E, Kim J, Yie J. Cu–Mn mixed oxides for low temperature NO reduction with NH3. Catalysis Today, 2006, 111 (3): 236–241

    Article  CAS  Google Scholar 

  39. Liu F, Shan W, Lian Z, Xie L, Yang W, He H. Novel MnWO x catalyst with remarkable performance for low temperature NH3-SCR of NO x . Catalysis Science & Technology, 2013, 3(10): 2699–2707

    Article  CAS  Google Scholar 

  40. Li J, Chen J, Ke R, Luo C, Hao J. Effects of precursors on the surface Mn species and the activities for NO reduction over MnO x /TiO2 catalysts. Catalysis Communications, 2007, 8(12): 1896–1900

    Article  CAS  Google Scholar 

  41. Long R Q, Yang R T, Chang R. Low temperature selective catalytic reduction (SCR) of NO with NH3 over Fe-Mn based catalysts. Chemical Communications, 2002, 5(5): 452–453

    Article  CAS  Google Scholar 

  42. Ma L, Li J, Ke R, Fu L. Catalytic performance, characterization, and mechanism study of Fe2(SO4)3/TiO2 catalyst for selective catalytic reduction of NO x by ammonia. Journal of Physical Chemistry C, 2011, 115(15): 7603–7612

    Article  CAS  Google Scholar 

  43. Li X, Li J, Peng Y, Zhang T, Liu S, Hao J. Selective catalytic reduction of NO with NH3 over novel iron-tungsten mixed oxide catalyst in a broad temperature range. Catalysis Science & Technology, 2015, 5(9): 4556–4564

    Article  CAS  Google Scholar 

  44. Ma L, Cheng Y, Cavataio G, McCabe R W, Fu L, Li J. Characterization of commercial Cu-SSZ-13 and Cu-SAPO-34 catalysts with hydrothermal treatment for NH3-SCR of NOx in diesel exhaust. Chemical Engineering Journal, 2013, 225: 323–330

    Article  CAS  Google Scholar 

  45. Li J, Zhu R, Cheng Y, Lambert C K, Yang R T. Mechanism of propene poisoning on Fe-ZSM-5 for selective catalytic reduction of NO x with ammonia. Environmental Science & Technology, 2010, 44(5): 1799–1805

    Article  CAS  Google Scholar 

  46. Ma L, Chang H, Yang S, Chen L, Fu L, Li J. Relations between iron sites and performance of Fe/HBEA catalysts prepared by two different methods for NH3-SCR. Chemical Engineering Journal, 2012, 209: 652–660

    Article  CAS  Google Scholar 

  47. Kapteijn F, Singoredjo L, Andreini A, Moulijn J. Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxide with ammonia. Applied Catalysis B: Environmental, 1994, 3(2): 173–189

    Article  CAS  Google Scholar 

  48. Tang X, Li J, Sun L, Hao J. Origination of N2O from NO reduction by NH3 over β-MnO2 and α-Mn2O3. Applied Catalysis B: Environmental, 2010, 99(1): 156–162

    Article  CAS  Google Scholar 

  49. Li J, Chen J, Ke R, Luo C, Hao J. Effects of precursors on the surface Mn species and the activities for NO reduction over MnO x /TiO2 catalysts. Catalysis Communications, 2007, 8(12): 1896–1900

    Article  CAS  Google Scholar 

  50. Gao X, Jiang Y, Zhong Y, Luo Z, Cen K. The activity and characterization of CeO2-TiO2 catalysts prepared by the sol-gel method for selective catalytic reduction of NO with NH3. Journal of Hazardous Materials, 2010, 174(1–3): 734–739

    Article  CAS  Google Scholar 

  51. Xu W, Yu Y, Zhang C, He H. Selective catalytic reduction of NO by NH3 over a Ce/TiO2 catalyst. Catalysis Communications, 2008, 9(6): 1453–1457

    Article  CAS  Google Scholar 

  52. Wu Z, Jiang B, Liu Y,Wang H, Jin R. DRIFT study of manganese/ titania-based catalysts for low-temperature selective catalytic reduction of NO with NH3. Environmental Science & Technology, 2007, 41(16): 5812–5817

    Article  CAS  Google Scholar 

  53. Wu Z, Jin R, Liu Y, Wang H. Ceria modified MnO x /TiO2 as a superior catalyst for NO reduction with NH3 at low-temperature. Catalysis Communications, 2008, 9(13): 2217–2220

    Article  CAS  Google Scholar 

  54. Wu Z, Jiang B, Liu Y, Zhao W, Guan B. Experimental study on a low-temperature SCR catalyst based on MnO x /TiO2 prepared by sol-gel method. Journal of Hazardous Materials, 2007, 145(3): 488–494

    Article  CAS  Google Scholar 

  55. Wu Z, Jin R, Wang H, Liu Y. Effect of ceria doping on SO2 resistance of Mn/TiO2 for selective catalytic reduction of NO with NH3 at low temperature. Catalysis Communications, 2009, 10(6): 935–939

    Article  CAS  Google Scholar 

  56. Chen J, Buzanowski M, Yang R, Cichanowicz J. Deactivation of the vanadia catalyst in the selective catalytic reduction process. Journal of the Air & Waste Management Association, 1990, 40 (10): 1403–1409

    Article  CAS  Google Scholar 

  57. Lietti L, Forzatti P, Ramis G, Busca G, Bregani F. Potassium doping of vanadia/titania de-NOx ing catalysts: Surface characterisation and reactivity study. Applied Catalysis B: Environmental, 1993, 3(1): 13–35

    Article  CAS  Google Scholar 

  58. Kling Å, Andersson C, Myringer Å, Eskilsson D, Järås S G. Alkali deactivation of high-dust SCR catalysts used for NOx reduction exposed to flue gas from 100MW-scale biofuel and peat fired boilers: influence of flue gas composition. Applied Catalysis B: Environmental, 2007, 69(3): 240–251

    Article  CAS  Google Scholar 

  59. Lisi L, Lasorella G, Malloggi S, Russo G. Single and combined deactivating effect of alkali metals and HCl on commercial SCR catalysts. Applied Catalysis B: Environmental, 2004, 50(4): 251–258

    Article  CAS  Google Scholar 

  60. Zheng Y, Jensen A, Johnsson J. Laboratory investigation of selective catalytic reduction catalysts: deactivation by potassium compounds and catalyst regeneration. Industrial & Engineering Chemistry Research, 2004, 43(4): 941–947

    Article  CAS  Google Scholar 

  61. Zheng Y, Jensen A, Johnsson J. Deactivation of V2O5-WO3-TiO2 SCR catalyst at a biomass-fired combined heat and power plant. Applied Catalysis B: Environmental, 2005, 60(3): 253–264

    Article  CAS  Google Scholar 

  62. Nicosia D, Elsener M, Kröcher O, Jansohn P. Basic investigation of the chemical deactivation of V2O5-WO3-TiO2 SCR catalysts by potassium, calcium, and phosphate. Topics in Catalysis, 2007, 42 (1): 333–336

    Article  CAS  Google Scholar 

  63. Nicosia D, Czekaj I, Kröcher O. Chemical deactivation of V2O5/WO3-TiO2 SCR catalysts by additives and impurities from fuels, lubrication oils and urea solution: Part II. Characterization study of the effect of alkali and alkaline earth metals. Applied Catalysis B: Environmental, 2008, 77(3): 228–236

    Article  CAS  Google Scholar 

  64. Peng Y, Li J, Shi W, Xu J, Hao J. Design strategies for development of SCR catalyst: improvement of alkali poisoning resistance and novel regeneration method. Environmental Science & Technology, 2012, 46(22): 12623–12629

    Article  CAS  Google Scholar 

  65. Calatayud M, Minot C. Effect of alkali doping on a V2O5/TiO2 catalyst from periodic DFT calculations. Journal of Physical Chemistry C, 2007, 111(17): 6411–6417

    Article  CAS  Google Scholar 

  66. Witko M, Grybos R, Tokarz-Sobieraj R. Heterogeneity of V2O5 (010) surfaces–the role of alkali metal dopants. Topics in Catalysis, 2006, 38(1–3): 105–115

    Article  CAS  Google Scholar 

  67. Kristensen S, Kunov-Kruse A, Riisager A, Rasmussen S, Fehrmann R. High performance vanadia–anatase nanoparticle catalysts for the selective catalytic reduction of NO by ammonia. Journal of Catalysis, 2011, 284(1): 60–67

    Article  CAS  Google Scholar 

  68. Du X, Gao X, Qiu K, Luo Z, Cen K. The reaction of poisonous alkali oxides with vanadia SCR catalyst and the afterward influence: a DFT and experimental study. Journal of Physical Chemistry C, 2015, 119(4): 1905–1912

    Article  CAS  Google Scholar 

  69. Du X, Gao X, Qu R, Ji P, Luo Z, Cen K. Cen K F, The influence of alkali metals on the Ce–Ti mixed oxide catalyst for the selective catalytic reduction of NO x . ChemCatChem, 2012, 4(12): 2075–2081

    Article  CAS  Google Scholar 

  70. Shen Y, Zhu S. Deactivation mechanism of potassium additives on Ti0.8Zr0.2Ce0.2O2.4 for NH3-SCR of NO. Catalysis Science & Technology, 2012, 2(9): 1806–1810

    Article  CAS  Google Scholar 

  71. Yang B, Shen Y, Shen B, Zhu S. Regeneration of the deactivated TiO2-ZrO2-CeO2/ATS catalyst for NH3-SCR of NOx in glass furnace. Journal of Rare Earths, 2013, 31(2): 130–136

    Article  CAS  Google Scholar 

  72. Peng Y, Li J, Chen L, Chen J, Han J, Zhang H, Han W. Alkali metal poisoning of a CeO2-WO3 catalyst used in the selective catalytic reduction of NO x with NH3: an experimental and theoretical study. Environmental Science & Technology, 2012, 46(5): 2864–2869

    Article  CAS  Google Scholar 

  73. Cimino S, Lisi L, Tortorelli M, Low temperature SCR on supported MnOx catalysts for marine exhaust gas cleaning: Effect of KCl poisoning. Chemical Engineering Journal 2016, 283: 223–230

    Article  CAS  Google Scholar 

  74. Guo R, Wang Q, Pan W, Chen Q, Ding H, Yin X, Yang N, Lu C, Wang S, Yuan Y. The poisoning effect of heavy metals doping on Mn/TiO2 catalyst for selective catalytic reduction of NO with NH3. Journal of Molecular Catalysis A Chemical, 2015, 407: 1–7

    Article  CAS  Google Scholar 

  75. Shen B, Deng L, Chen J. Effect of K and Ca on catalytic activity of Mn-CeO x /Ti-PILC. Frontiers of Environmental Science & Engineering, 2013, 7(4): 512–517

    Article  CAS  Google Scholar 

  76. Peng Y, Li J, Huang X, Li X, Su W, Sun X, Wang D, Hao J. Deactivation mechanism of potassium on the V2O5/CeO2 catalysts for SCR reaction: acidity, reducibility and adsorbed-NO x . Environmental Science & Technology, 2014, 48(8): 4515–4520

    Article  CAS  Google Scholar 

  77. Tang F, Xu B, Shi H, Qiu J, Fan Y. The poisoning effect of Na+ and Ca2+ ions doped on the V2O5/TiO2 catalysts for selective catalytic reduction of NO by NH3. Applied Catalysis B: Environmental, 2010, 94(1): 71–76

    Article  CAS  Google Scholar 

  78. Wang H, Chen X, Gao S, Wu Z, Liu Y, Weng X. Deactivation mechanism of Ce/TiO2 selective catalytic reduction catalysts by the loading of sodium and calcium salts. Catalysis Science & Technology, 2013, 3(3): 715–722

    Article  CAS  Google Scholar 

  79. Liu Y, Gu T, Wang Y, Weng X, Wu Z. Influence of Ca doping on MnO x /TiO2 catalysts for low-temperature selective catalytic reduction of NO x by NH3. Catalysis Communications, 2012, 18: 106–109

    Article  CAS  Google Scholar 

  80. Gu T, Jin R, Liu Y, Liu H, Weng X, Wu Z. Promoting effect of calcium doping on the performances of MnO x /TiO2 catalysts for NO reduction with NH3 at low temperature. Applied Catalysis B: Environmental, 2013, 129: 30–38

    Article  CAS  Google Scholar 

  81. Choo S, Yim S, Nam I, Ham S, Lee J. Effect of promoters including WO3 and BaO on the activity and durability of V2O5/ sulfated TiO2 catalyst for NO reduction by NH3. Applied Catalysis B: Environmental, 2003, 44(3): 237–252

    Article  CAS  Google Scholar 

  82. Choung J, Nam I, Ham S. Effect of promoters including tungsten and barium on the thermal stability of V2O5/sulfated TiO2 catalyst for NO reduction by NH3. Catalysis Today, 2006, 111(3): 242–247

    Article  CAS  Google Scholar 

  83. Putluru S, Kristensen S, Due-Hansen J, Riisager A, Fehrmann R. Alternative alkali resistant deNO x catalysts. Catalysis Today, 2012, 184(1): 192–196

    Article  CAS  Google Scholar 

  84. Yu W, Wu X, Si Z, Weng D. Influences of impregnation procedure on the SCR activity and alkali resistance of V2O5–WO3/TiO2 catalyst. Applied Surface Science, 2013, 283: 209–214

    Article  CAS  Google Scholar 

  85. Zhang L, Cui S, Guo H, Ma X, Luo X. The influence of K+ cation on the MnO x -CeO2/TiO2 catalysts for selective catalytic reduction of NO x with NH3 at low temperature. Journal of Molecular Catalysis A Chemical, 2014, 390: 14–21

    Article  CAS  Google Scholar 

  86. Due-Hansen J, Boghosian S, Kustov A, Fristrup P, Tsilomelekis G, Ståhl K, Christensen C H, Fehrmann R. Vanadia-based SCR catalysts supported on tungstated and sulfated zirconia: influence of doping with potassium. Journal of Catalysis, 2007, 251(2): 459–473

    Article  CAS  Google Scholar 

  87. Due-Hansen J, Kustov A L, Rasmussen S B, Fehrmann R, Christensen C H. Tungstated zirconia as promising carrier for DeNOx catalysts with improved resistance towards alkali poisoning. Applied Catalysis B: Environmental, 2006, 66(3): 161–167

    Article  CAS  Google Scholar 

  88. Peng Y, Li J, Si W, Li X, Shi W, Luo J, Fu J, Crittenden J, Hao J. Ceria promotion on the potassium resistance of MnO x /TiO2 SCR catalysts: an experimental and DFT study. Chemical Engineering Journal, 2015, 269: 44–50

    Article  CAS  Google Scholar 

  89. Hu P, Huang Z, Gu X, Xu F, Gao J, Wang Y, Chen Y, Tang X. Alkali-resistant mechanism of a hollandite DeNO x catalyst. Environmental Science & Technology, 2015, 49(11): 7042–7047

    Article  CAS  Google Scholar 

  90. Wang P, Wang H, Chen X, Liu Y, Weng X, Wu Z. Novel SCR catalyst with superior alkaline resistance performance: enhanced self-protection originated from modifying protonated titanate nanotubes. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(2): 680–690

    Article  CAS  Google Scholar 

  91. Hower J, Trimble A, Eble C, Palmer C, Kolker A. Characterization of fly ash from low-sulfur and high-sulfur coal sources: partitioning of carbon and trace elements with particle size. Energy Sources, 1999, 21(6): 511–525

    Article  CAS  Google Scholar 

  92. Phil H, Reddy M, Kumar P, Ju L, Hyo J. SO2 resistant antimony promoted V2O5/TiO2 catalyst for NH3-SCR of NO x at low temperatures. Applied Catalysis B: Environmental, 2008, 78(3): 301–308

    Article  CAS  Google Scholar 

  93. Lietti L, Nova I, Forzatti P. Selective catalytic reduction (SCR) of NO by NH3 over TiO2-supported V2O5–WO3 and V2O5–MoO3 catalysts. Topics in Catalysis, 2000, 11–12(1–4): 111–122

    Article  Google Scholar 

  94. Klimczak M, Kern P, Heinzelmann T, Lucas M, Claus P. Highthroughput study of the effects of inorganic additives and poisons on NH3-SCR catalysts—Part I: V2O5–WO3/TiO2 catalysts. Applied Catalysis B: Environmental, 2010, 95(1): 39–47

    Article  CAS  Google Scholar 

  95. Shang X, Hu G, He C, Zhao J, Zhang F, Xu Y, Zhang Y, Li J, Chen J. Regeneration of full-scale commercial honeycomb monolith catalyst (V2O5–WO3/TiO2) used in coal-fired power plant. Journal of Industrial and Engineering Chemistry, 2012, 18(1): 513–519

    Article  CAS  Google Scholar 

  96. Kamata H, Ohara H, Takahashi K, Yukimura A, Seo Y. SO2 oxidation over the V2O5/TiO2 SCR catalyst. Catalysis Letters, 2001, 73(1): 79–83

    Article  CAS  Google Scholar 

  97. Srivastava R K, Miller C A, Erickson C, Jambhekar R. Emissions of sulfur trioxide from coal-fired power plants. Journal of the Air & Waste Management Association, 2004, 54(6): 750–762

    Article  CAS  Google Scholar 

  98. Guo X, Bartholomew C, Hecker W, Baxter L L. Effects of sulfate species on V2O5/TiO2 SCR catalysts in coal and biomass-fired systems. Applied Catalysis B: Environmental, 2009, 92(1): 30–40

    Article  CAS  Google Scholar 

  99. Magnusson M, Fridell E, Ingelsten H. The influence of sulfur dioxide and water on the performance of a marine SCR catalyst. Applied Catalysis B: Environmental, 2012, 111: 20–26

    Article  CAS  Google Scholar 

  100. Giakoumelou I, Fountzoula C, Kordulis C, Boghosian S. Molecular structure and catalytic activity of V2O5/TiO2 catalysts for the SCR of NO by NH3: in situ Raman spectra in the presence of O2, NH3, NO, H2, H2O, and SO2. Journal of Catalysis, 2006, 239(1): 1–12

    Article  CAS  Google Scholar 

  101. Xu W, He H, Yu Y. Deactivation of a Ce/TiO2 catalyst by SO2 in the selective catalytic reduction of NO by NH3. Journal of Physical Chemistry C, 2009, 113(11): 4426–4432

    Article  CAS  Google Scholar 

  102. Chang H, Li J, Yuan J, Chen L, Dai Y, Arandiyan H, Xu J, Hao J. Ge, Mn-doped CeO2–WO3 catalysts for NH3–SCR of NO x : effects of SO2 and H2 regeneration. Catalysis Today, 2013, 201: 139–144

    Article  CAS  Google Scholar 

  103. Liu J, Li X, Zhao Q, Hao C, Wang S, Tade M. Combined spectroscopic and theoretical approach to sulfur-poisoning on Cusupported Ti–Zr mixed oxide catalyst in the selective catalytic reduction of NOx. ACS Catalysis, 2014, 4(8): 2426–2436

    Article  CAS  Google Scholar 

  104. Jiang B, Wu Z, Liu Y, Lee S, Ho W. DRIFT study of the SO2 effect on low-temperature SCR reaction over Fe-Mn/TiO2. Journal of Physical Chemistry C, 2010, 114(11): 4961–4965

    Article  CAS  Google Scholar 

  105. Jin R, Liu Y, Wu Z, Wang H, Gu T. Relationship between SO2 poisoning effects and reaction temperature for selective catalytic reduction of NO over Mn–Ce/TiO2 catalyst. Catalysis Today, 2010, 153(3): 84–89

    Article  CAS  Google Scholar 

  106. Sheng Z, Hu Y, Xue J, Wang X, Liao W. SO2 poisoning and regeneration of Mn-Ce/TiO2 catalyst for low temperature NO x reduction with NH3. Journal of Rare Earths, 2012, 30(7): 676–682

    Article  CAS  Google Scholar 

  107. Yang S, Guo Y, Yan N, Wu D, He H, Xie J, Qu Z, Jia J. Remarkable effect of the incorporation of titanium on the catalytic activity and SO2 poisoning resistance of magnetic Mn–Fe spinel for elemental mercury capture. Applied Catalysis B: Environmental, 2011, 101(3): 698–708

    Article  CAS  Google Scholar 

  108. Casarin M, Ferrigato F, Maccato C, Vittadini A. SO2 on TiO2(110) and Ti2O3(102) nonpolar surfaces: a DFT study. Journal of Physical Chemistry B, 2005, 109(25): 12596–12602

    Article  CAS  Google Scholar 

  109. Lu Z, Müller C, Yang Z, Hermansson K, Kullgren J. SO x on ceria from adsorbed SO2. Journal of Chemical Physics, 2011, 134(18): 184703

    Article  CAS  Google Scholar 

  110. Liu Y, Cen W, Wu Z, Weng X, Wang H. SO2 poisoning structures and the effects on pure and Mn doped CeO2: a first principles investigation. Journal of Physical Chemistry C, 2012, 116(43): 22930–22937

    Article  CAS  Google Scholar 

  111. Ma Z, Weng D, Wu X, Si Z, Wang B. A novel Nb–Ce/WO x –TiO2 catalyst with high NH3-SCR activity and stability. Catalysis Communications, 2012, 27: 97–100

    Article  CAS  Google Scholar 

  112. Chang H, Chen X, Li J, Ma L, Wang C, Liu C, Schwank J W, Hao J. Improvement of activity and SO2 tolerance of Sn-modified MnO x -CeO2 catalysts for NH3-SCR at low temperatures. Environmental Science & Technology, 2013, 47(10): 5294–5301

    Article  CAS  Google Scholar 

  113. Du X, Gao X, Cui L, Fu Y, Luo Z, Cen K. Investigation of the effect of Cu addition on the SO2-resistance of a Ce Ti oxide catalyst for selective catalytic reduction of NO with NH3. Fuel, 2012, 92 (1): 49–55

    Article  CAS  Google Scholar 

  114. Liu C, Chen L, Li J, Ma L, Arandiyan H, Du Y, Xu J, Hao J. Enhancement of activity and sulfur resistance of CeO2 supported on TiO2-SiO2 for the selective catalytic reduction of NO by NH3. Environmental Science & Technology, 2012, 46(11): 6182–6189

    Article  CAS  Google Scholar 

  115. Peng Y, Liu C, Zhang X, Li J. The effect of SiO2 on a novel CeO2–WO3/TiO2 catalyst for the selective catalytic reduction of NO with NH3. Applied Catalysis B: Environmental, 2013, 140: 276–282

    Article  CAS  Google Scholar 

  116. Blanco J, Avila P, Barthelemy C, Bahamonde A, Odriozola J, De La Banda J G, Heinemann H. Influence of phosphorus in vanadium-containing catalysts for NO x removal. Applied Catalysis, 1989, 55(1): 151–164

    Article  CAS  Google Scholar 

  117. Kamata H, Takahashi K, Odenbrand C I. Surface acid property and its relation to SCR activity of phosphorus added to commercial V2O5 (WO3)/TiO2 catalyst. Catalysis Letters, 1998, 53(1): 65–71

    Article  CAS  Google Scholar 

  118. Beck J, Brandenstein J, Unterberger S, Hein K R. Effects of sewage sludge and meat and bone meal co-combustion on SCR catalysts. Applied Catalysis B: Environmental, 2004, 49(1): 15–25

    Article  CAS  Google Scholar 

  119. Beck J, Müller R, Brandenstein J, Matscheko B, Matschke J, Unterberger S, Hein K R. The behaviour of phosphorus in flue gases from coal and secondary fuel co-combustion. Fuel, 2005, 84 (14): 1911–1919

    Article  CAS  Google Scholar 

  120. Beck J, Unterberger S. The behaviour of phosphorus in the flue gas during the combustion of high-phosphate fuels. Fuel, 2006, 85(10): 1541–1549

    Article  CAS  Google Scholar 

  121. Tobiasen L, Skytte R, Pedersen L, Pedersen S, Lindberg M. Deposit characteristic after injection of additives to a Danish strawfired suspension boiler. Fuel Processing Technology, 2007, 88(11): 1108–1117

    Article  CAS  Google Scholar 

  122. Castellino F, Jensen A, Johnsson J, Fehrmann R. Influence of reaction products of K-getter fuel additives on commercial vanadia-based SCR catalysts: Part II. Simultaneous addition of KCl, Ca (OH)2, H3PO4 and H2SO4 in a hot flue gas at a SCR pilotscale setup. Applied Catalysis B: Environmental, 2009, 86(3): 206–215

    Article  CAS  Google Scholar 

  123. Castellino F, Rasmussen S, Jensen A, Johnsson J, Fehrmann R. Deactivation of vanadia-based commercial SCR catalysts by polyphosphoric acids. Applied Catalysis B: Environmental, 2008, 83(1): 110–122

    Article  CAS  Google Scholar 

  124. Li F, Zhang Y, Xiao D, Wang D, Pan X, Yang X. Hydrothermal Method Prepared Ce-P-O Catalyst for the Selective Catalytic Reduction of NO with NH3 in a Broad Temperature Range. ChemCatChem, 2010, 2(11): 1416–1419

    Article  CAS  Google Scholar 

  125. Chang H, Wu Q, Zhang T, Li M, Sun X, Li J, Duan L, Hao J. Design strategies for CeO2-MoO3 catalysts for DeNO x and Hg0 oxidation in the presence of HCl: The significance of the surface acid-base properties. Environmental Science & Technology, 2015, 49(20): 12388–12394

    Article  CAS  Google Scholar 

  126. Chang F Y, Chen J C, Wey M Y, Tsai S A. Effects of particulates, heavy metals and acid gas on the removals of NO and PAHs by V2O5-WO3 catalysts in waste incineration system. Journal of Hazardous Materials, 2009, 170(1): 239–246

    Article  CAS  Google Scholar 

  127. Chang F, Chen J, Wey M. Catalytic removal of NO in waste incineration processes over Rh/Al2O3 and Rh–Na/Al2O3: Effects of particulates, heavy metals, SO2 and HCl. Fuel Processing Technology, 2009, 90(4): 576–582

    Article  CAS  Google Scholar 

  128. Chang F, Chen J,Wey M. Effects of oxygen and hydrogen chloride on NO removal efficiency by Rh/Al2O3 and Rh–Na/Al2O3 catalysts. Applied Catalysis A, General, 2009, 359(1): 88–95

    Article  CAS  Google Scholar 

  129. Hums E. Is advanced SCR technology at a standstill A provocation for the academic community and catalyst manufacturers. Catalysis Today, 1998, 42(1): 25–35

    Article  CAS  Google Scholar 

  130. Hums E. Understanding of deactivation behavior of DeNO x catalysts: a key to advanced catalyst applications. Kinetics and Catalysis, 1998, 39(5): 603–606

    CAS  Google Scholar 

  131. Valdés-Solí T, Marbán G, Fuertes A. Low-temperature SCR of NO x with NH3 over carbon-ceramic supported catalysts. Applied Catalysis B: Environmental, 2003, 46(2): 261–271

    Article  CAS  Google Scholar 

  132. Senior C, Lignell D, Sarofim A, Mehta A. Modeling arsenic partitioning in coal-fired power plants. Combustion and Flame, 2006, 147(3): 209–221

    Article  CAS  Google Scholar 

  133. Wei Z, Zhang S, Pan Z, Liu Y. Theoretical studies of arsenite adsorption and its oxidation mechanism on a perfect TiO2 anatase (101) surface. Applied Surface Science, 2011, 258(3): 1192–1198

    Article  CAS  Google Scholar 

  134. Kong M, Liu Q, Wang X, Ren S, Yang J, Zhao D, Xi W, Yao L. Performance impact and poisoning mechanism of arsenic over commercial V2O5–WO3/TiO2 SCR catalyst. Catalysis Communications, 2015, 72: 121–126

    Article  CAS  Google Scholar 

  135. Peng Y, Li J, Si W, Luo J, Dai Q, Luo X, Liu X, Hao J. Insight into deactivation of commercial SCR catalyst by arsenic: an experiment and DFT study. Environmental Science & Technology, 2014, 48 (23): 13895–13900

    Article  CAS  Google Scholar 

  136. Li X, Li J, Peng Y, Si W, He X, Hao J. Regeneration of commercial SCR Catalysts: probing the existing forms of arsenic oxide. Environmental Science & Technology, 2015, 49(16): 9971–9978

    Article  CAS  Google Scholar 

  137. Lange F, Schmelz H, Knözinger H. Infrared-spectroscopic investigations of selective catalytic reduction catalysts poisoned with arsenic oxide. Applied Catalysis B: Environmental, 1996, 8 (2): 245–265

    Article  CAS  Google Scholar 

  138. Li X, Li Y. Molybdenum modified CeAlO x catalyst for the selective catalytic reduction of NO with NH3. Journal of Molecular Catalysis A Chemical, 2014, 386: 69–77

    Article  CAS  Google Scholar 

  139. Peng Y, Si W, Li X, Luo J, Li J, Crittenden J, Hao J. Comparison of MoO3 andWO3 on arsenic poisoning V2O5/TiO2 catalyst: DRIFTS and DFT study. Applied Catalysis B: Environmental, 2016, 181: 692–698

    Article  CAS  Google Scholar 

  140. Khodayari R, Odenbrand C. Deactivating effects of lead on the selective catalytic reduction of nitric oxide with ammonia over a V2O5/WO3/TiO2 catalyst for waste incineration applications. Industrial & Engineering Chemistry Research, 1998, 37(4): 1196–1202

    Article  CAS  Google Scholar 

  141. Gao X, Du X, Fu Y, Mao J, Luo Z, Ni M, Cen K. Theoretical and experimental study on the deactivation of V2O5 based catalyst by lead for selective catalytic reduction of nitric oxides. Catalysis Today, 2011, 175(1): 625–630

    Article  CAS  Google Scholar 

  142. Jiang Y, Gao X, Zhang Y, Wu W, Luo Z, Cen K. PbCl2 - poisoning kinetics of V2O5/TiO2 catalysts for the selective catalytic reduction of NO with NH3. Environmental Progress & Sustainable Energy, 2015, 34(4): 1085–1091

    Article  CAS  Google Scholar 

  143. Jiang Y, Gao X, Zhang Y, Wu W, Song H, Luo Z, Cen K. Effects of PbCl2 on selective catalytic reduction of NO with NH3 over vanadia-based catalysts. Journal of Hazardous Materials, 2014, 274: 270–278

    Article  CAS  Google Scholar 

  144. Guo R, Lu C, Pan W, Zhen W,Wang Q, Chen Q, Ding H, Yang N. A comparative study of the poisoning effect of Zn and Pb on Ce/TiO2 catalyst for low temperature selective catalytic reduction of NO with NH3. Catalysis Communications, 2015, 59: 136–139

    Article  CAS  Google Scholar 

  145. Larsson A, Einvall J, Andersson A, Sanati M. Targeting by comparison with laboratory experiments the SCR catalyst deactivation process by potassium and zinc salts in a large-scale biomass combustion boiler. Energy & Fuels, 2006, 20(4): 1398–1405

    Article  CAS  Google Scholar 

  146. Peng Y, Li J, Si W, Luo J,Wang Y, Fu J, Li X, Crittenden J, Hao J. Deactivation and regeneration of a commercial SCR catalyst: comparison with alkali metals and arsenic. Applied Catalysis B: Environmental, 2015, 168: 195–202

    Article  CAS  Google Scholar 

  147. Si Z, Weng D, Wu X, Ran R, Ma Z. NH3-SCR activity, hydrothermal stability, sulfur resistance and regeneration of Ce0.75Zr0.25O2-PO4 3– catalyst. Catalysis Communications, 2012, 17: 146–149

    Article  CAS  Google Scholar 

  148. Yu Y, He C, Chen J, Yin L, Qiu T, Meng X. Regeneration of deactivated commercial SCR catalyst by alkali washing. Catalysis Communications, 2013, 39: 78–81

    Article  CAS  Google Scholar 

  149. Gao F, Tang X, Yi H, Zhao S, Zhang T, Li D, Ma D. The poisoning and regeneration effect of alkali metals deposed over commercial V2O5-WO3/TiO2 catalysts on SCR of NO by NH3. Chinese Science Bulletin, 2014, 59(31): 3966–3972

    Article  CAS  Google Scholar 

  150. Lee J, Kim S, Kim D, Kim K, Chun S, Hur K, Jeong S. Effect of H2SO4 concentration in washing solution on regeneration of commercial selective catalytic reduction catalyst. Korean Journal of Chemical Engineering, 2012, 29(2): 270–276

    Article  CAS  Google Scholar 

  151. Qiu K, Song J, Song H, Gao X, Luo Z, Cen K. A novel method of microwave heating mixed liquid-assisted regeneration of V2O5-WO3/TiO2 commercial SCR catalysts. Environmental Geochemistry and Health, 2015, 37(5): 905–914

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junhua Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Peng, Y., Chang, H. et al. Chemical poison and regeneration of SCR catalysts for NO x removal from stationary sources. Front. Environ. Sci. Eng. 10, 413–427 (2016). https://doi.org/10.1007/s11783-016-0832-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11783-016-0832-3

Keywords

Navigation